X-Git-Url: http://git.ieval.ro/?a=blobdiff_plain;ds=sidebyside;f=libseccomp%2Fsrc%2Fhash.c;fp=libseccomp%2Fsrc%2Fhash.c;h=1228307c826e28a22699505cf28547a87a36acbc;hb=8befd5cc4d2b478c697d81a5ac191083c203d081;hp=0000000000000000000000000000000000000000;hpb=bcf524c10c0ad85fcef711acffc3251bb8472352;p=linux-seccomp.git diff --git a/libseccomp/src/hash.c b/libseccomp/src/hash.c new file mode 100644 index 0000000..1228307 --- /dev/null +++ b/libseccomp/src/hash.c @@ -0,0 +1,674 @@ +/** + * Seccomp Library hash code + * + * Release under the Public Domain + * Author: Bob Jenkins + */ + +/* + * lookup3.c, by Bob Jenkins, May 2006, Public Domain. + * + * These are functions for producing 32-bit hashes for hash table lookup. + * jhash_word(), jhash_le(), jhash_be(), mix(), and final() are externally useful + * functions. Routines to test the hash are included if SELF_TEST is defined. + * You can use this free for any purpose. It's in the public domain. It has + * no warranty. + * + * You probably want to use jhash_le(). jhash_le() and jhash_be() hash byte + * arrays. jhash_le() is is faster than jhash_be() on little-endian machines. + * Intel and AMD are little-endian machines. + * + * If you want to find a hash of, say, exactly 7 integers, do + * a = i1; b = i2; c = i3; + * mix(a,b,c); + * a += i4; b += i5; c += i6; + * mix(a,b,c); + * a += i7; + * final(a,b,c); + * + * then use c as the hash value. If you have a variable length array of + * 4-byte integers to hash, use jhash_word(). If you have a byte array (like + * a character string), use jhash_le(). If you have several byte arrays, or + * a mix of things, see the comments above jhash_le(). + * + * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, then + * mix those integers. This is fast (you can do a lot more thorough mixing + * with 12*3 instructions on 3 integers than you can with 3 instructions on 1 + * byte), but shoehorning those bytes into integers efficiently is messy. + */ + +#include + +#include "arch.h" +#include "hash.h" + +#define hashsize(n) ((uint32_t)1<<(n)) +#define hashmask(n) (hashsize(n)-1) +#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) + +/** + * Mix 3 32-bit values reversibly + * @param a 32-bit value + * @param b 32-bit value + * @param c 32-bit value + * + * This is reversible, so any information in (a,b,c) before mix() is still + * in (a,b,c) after mix(). + * + * If four pairs of (a,b,c) inputs are run through mix(), or through mix() in + * reverse, there are at least 32 bits of the output that are sometimes the + * same for one pair and different for another pair. + * + * This was tested for: + * - pairs that differed by one bit, by two bits, in any combination of top + * bits of (a,b,c), or in any combination of bottom bits of (a,b,c). + * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the + * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly + * produced by subtraction) look like a single 1-bit difference. + * - the base values were pseudorandom, all zero but one bit set, or all zero + * plus a counter that starts at zero. + * + * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that + * satisfy this are + * 4 6 8 16 19 4 + * 9 15 3 18 27 15 + * 14 9 3 7 17 3 + * + * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ" + * defined as + with a one-bit base and a two-bit delta. I used + * http://burtleburtle.net/bob/hash/avalanche.html to choose the operations, + * constants, and arrangements of the variables. + * + * This does not achieve avalanche. There are input bits of (a,b,c) that fail + * to affect some output bits of (a,b,c), especially of a. The most thoroughly + * mixed value is c, but it doesn't really even achieve avalanche in c. + * + * This allows some parallelism. Read-after-writes are good at doubling the + * number of bits affected, so the goal of mixing pulls in the opposite + * direction as the goal of parallelism. I did what I could. Rotates seem to + * cost as much as shifts on every machine I could lay my hands on, and rotates + * are much kinder to the top and bottom bits, so I used rotates. + * + */ +#define mix(a,b,c) \ + { \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ + } + +/** + * Final mixing of 3 32-bit values (a,b,c) into c + * @param a 32-bit value + * @param b 32-bit value + * @param c 32-bit value + * + * Pairs of (a,b,c) values differing in only a few bits will usually produce + * values of c that look totally different. This was tested for: + * - pairs that differed by one bit, by two bits, in any combination of top + * bits of (a,b,c), or in any combination of bottom bits of (a,b,c). + * - "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the + * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly + * produced by subtraction) look like a single 1-bit difference. + * - the base values were pseudorandom, all zero but one bit set, or all zero + * plus a counter that starts at zero. + * + * These constants passed: + * 14 11 25 16 4 14 24 + * 12 14 25 16 4 14 24 + * and these came close: + * 4 8 15 26 3 22 24 + * 10 8 15 26 3 22 24 + * 11 8 15 26 3 22 24 + * + */ +#define final(a,b,c) \ + { \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c,4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ + } + +/** + * Hash an array of 32-bit values + * @param k the key, an array of uint32_t values + * @param length the number of array elements + * @param initval the previous hash, or an arbitrary value + * + * This works on all machines. To be useful, it requires: + * - that the key be an array of uint32_t's, and + * - that the length be the number of uint32_t's in the key + * + * The function jhash_word() is identical to jhash_le() on little-endian + * machines, and identical to jhash_be() on big-endian machines, except that + * the length has to be measured in uint32_ts rather than in bytes. jhash_le() + * is more complicated than jhash_word() only because jhash_le() has to dance + * around fitting the key bytes into registers. + * + */ +static uint32_t jhash_word(const uint32_t *k, size_t length, uint32_t initval) +{ + uint32_t a, b, c; + + /* set up the internal state */ + a = b = c = 0xdeadbeef + (((uint32_t)length) << 2) + initval; + + /* handle most of the key */ + while (length > 3) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 3; + k += 3; + } + + /* handle the last 3 uint32_t's */ + switch(length) { + case 3 : + c += k[2]; + case 2 : + b += k[1]; + case 1 : + a += k[0]; + final(a, b, c); + case 0: + /* nothing left to add */ + break; + } + + return c; +} + +/** + * Hash a variable-length key into a 32-bit value + * @param key the key (the unaligned variable-length array of bytes) + * @param length the length of the key, counting by bytes + * @param initval can be any 4-byte value + * + * Returns a 32-bit value. Every bit of the key affects every bit of the + * return value. Two keys differing by one or two bits will have totally + * different hash values. + * + * The best hash table sizes are powers of 2. There is no need to do mod a + * prime (mod is sooo slow!). If you need less than 32 bits, use a bitmask. + * For example, if you need only 10 bits, do: + * h = (h & hashmask(10)); + * In which case, the hash table should have hashsize(10) elements. + * + * If you are hashing n strings (uint8_t **)k, do it like this: + * for (i=0, h=0; iendian == ARCH_ENDIAN_LITTLE) && + ((u.i & 0x3) == 0)) { + /* read 32-bit chunks */ + const uint32_t *k = (const uint32_t *)key; + + while (length > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 12; + k += 3; + } + + /* "k[2]&0xffffff" actually reads beyond the end of the string, + * but then masks off the part it's not allowed to read. + * Because the string is aligned, the masked-off tail is in the + * same word as the rest of the string. Every machine with + * memory protection I've seen does it on word boundaries, so + * is OK with this. But VALGRIND will still catch it and + * complain. The masking trick does make the hash noticably + * faster for short strings (like English words). */ +#ifndef VALGRIND + + switch(length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += k[2] & 0xffffff; + b += k[1]; + a += k[0]; + break; + case 10: + c += k[2] & 0xffff; + b += k[1]; + a += k[0]; + break; + case 9 : + c += k[2] & 0xff; + b += k[1]; + a += k[0]; + break; + case 8 : + b += k[1]; + a += k[0]; + break; + case 7 : + b += k[1] & 0xffffff; + a += k[0]; + break; + case 6 : + b += k[1] & 0xffff; + a += k[0]; + break; + case 5 : + b += k[1] & 0xff; + a += k[0]; + break; + case 4 : + a += k[0]; + break; + case 3 : + a += k[0] & 0xffffff; + break; + case 2 : + a += k[0] & 0xffff; + break; + case 1 : + a += k[0] & 0xff; + break; + case 0 : + /* zero length strings require no mixing */ + return c; + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *)k; + switch(length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += ((uint32_t)k8[10]) << 16; + case 10: + c += ((uint32_t)k8[9]) << 8; + case 9 : + c += k8[8]; + case 8 : + b += k[1]; + a += k[0]; + break; + case 7 : + b += ((uint32_t)k8[6]) << 16; + case 6 : + b += ((uint32_t)k8[5]) << 8; + case 5 : + b += k8[4]; + case 4 : + a += k[0]; + break; + case 3 : + a += ((uint32_t)k8[2]) << 16; + case 2 : + a += ((uint32_t)k8[1]) << 8; + case 1 : + a += k8[0]; + break; + case 0 : + return c; + } + +#endif /* !valgrind */ + + } else if ((arch_def_native->endian == ARCH_ENDIAN_LITTLE) && + ((u.i & 0x1) == 0)) { + /* read 16-bit chunks */ + const uint16_t *k = (const uint16_t *)key; + const uint8_t *k8; + + while (length > 12) { + a += k[0] + (((uint32_t)k[1]) << 16); + b += k[2] + (((uint32_t)k[3]) << 16); + c += k[4] + (((uint32_t)k[5]) << 16); + mix(a, b, c); + length -= 12; + k += 6; + } + + k8 = (const uint8_t *)k; + switch(length) { + case 12: + c += k[4] + (((uint32_t)k[5]) << 16); + b += k[2] + (((uint32_t)k[3]) << 16); + a += k[0] + (((uint32_t)k[1]) << 16); + break; + case 11: + c += ((uint32_t)k8[10]) << 16; + case 10: + c += k[4]; + b += k[2] + (((uint32_t)k[3]) << 16); + a += k[0] + (((uint32_t)k[1]) << 16); + break; + case 9 : + c += k8[8]; + case 8 : + b += k[2] + (((uint32_t)k[3]) << 16); + a += k[0] + (((uint32_t)k[1]) << 16); + break; + case 7 : + b += ((uint32_t)k8[6]) << 16; + case 6 : + b += k[2]; + a += k[0] + (((uint32_t)k[1]) << 16); + break; + case 5 : + b += k8[4]; + case 4 : + a += k[0] + (((uint32_t)k[1]) << 16); + break; + case 3 : + a += ((uint32_t)k8[2]) << 16; + case 2 : + a += k[0]; + break; + case 1 : + a += k8[0]; + break; + case 0 : + /* zero length requires no mixing */ + return c; + } + + } else { + /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + while (length > 12) { + a += k[0]; + a += ((uint32_t)k[1]) << 8; + a += ((uint32_t)k[2]) << 16; + a += ((uint32_t)k[3]) << 24; + b += k[4]; + b += ((uint32_t)k[5]) << 8; + b += ((uint32_t)k[6]) << 16; + b += ((uint32_t)k[7]) << 24; + c += k[8]; + c += ((uint32_t)k[9]) << 8; + c += ((uint32_t)k[10]) << 16; + c += ((uint32_t)k[11]) << 24; + mix(a, b, c); + length -= 12; + k += 12; + } + + switch(length) { + case 12: + c += ((uint32_t)k[11]) << 24; + case 11: + c += ((uint32_t)k[10]) << 16; + case 10: + c += ((uint32_t)k[9]) << 8; + case 9 : + c += k[8]; + case 8 : + b += ((uint32_t)k[7]) << 24; + case 7 : + b += ((uint32_t)k[6]) << 16; + case 6 : + b += ((uint32_t)k[5]) << 8; + case 5 : + b += k[4]; + case 4 : + a += ((uint32_t)k[3]) << 24; + case 3 : + a += ((uint32_t)k[2]) << 16; + case 2 : + a += ((uint32_t)k[1]) << 8; + case 1 : + a += k[0]; + break; + case 0 : + return c; + } + } + + final(a, b, c); + return c; +} + +/** + * Hash a variable-length key into a 32-bit value + * @param key the key (the unaligned variable-length array of bytes) + * @param length the length of the key, counting by bytes + * @param initval can be any 4-byte value + * + * This is the same as jhash_word() on big-endian machines. It is different + * from jhash_le() on all machines. jhash_be() takes advantage of big-endian + * byte ordering. + * + */ +static uint32_t jhash_be( const void *key, size_t length, uint32_t initval) +{ + uint32_t a, b, c; + union { + const void *ptr; + size_t i; + } u; /* to cast key to (size_t) happily */ + + /* set up the internal state */ + a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; + + u.ptr = key; + if ((arch_def_native->endian == ARCH_ENDIAN_BIG) && + ((u.i & 0x3) == 0)) { + /* read 32-bit chunks */ + const uint32_t *k = (const uint32_t *)key; + + while (length > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a, b, c); + length -= 12; + k += 3; + } + + /* "k[2]<<8" actually reads beyond the end of the string, but + * then shifts out the part it's not allowed to read. Because + * the string is aligned, the illegal read is in the same word + * as the rest of the string. Every machine with memory + * protection I've seen does it on word boundaries, so is OK + * with this. But VALGRIND will still catch it and complain. + * The masking trick does make the hash noticably faster for + * short strings (like English words). */ +#ifndef VALGRIND + + switch(length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += k[2] & 0xffffff00; + b += k[1]; + a += k[0]; + break; + case 10: + c += k[2] & 0xffff0000; + b += k[1]; + a += k[0]; + break; + case 9 : + c += k[2] & 0xff000000; + b += k[1]; + a += k[0]; + break; + case 8 : + b += k[1]; + a += k[0]; + break; + case 7 : + b += k[1] & 0xffffff00; + a += k[0]; + break; + case 6 : + b += k[1] & 0xffff0000; + a += k[0]; + break; + case 5 : + b += k[1] & 0xff000000; + a += k[0]; + break; + case 4 : + a += k[0]; + break; + case 3 : + a += k[0] & 0xffffff00; + break; + case 2 : + a += k[0] & 0xffff0000; + break; + case 1 : + a += k[0] & 0xff000000; + break; + case 0 : + /* zero length strings require no mixing */ + return c; + } + +#else /* make valgrind happy */ + + k8 = (const uint8_t *)k; + switch(length) { + case 12: + c += k[2]; + b += k[1]; + a += k[0]; + break; + case 11: + c += ((uint32_t)k8[10]) << 8; + case 10: + c += ((uint32_t)k8[9]) << 16; + case 9 : + c += ((uint32_t)k8[8]) << 24; + case 8 : + b += k[1]; + a += k[0]; + break; + case 7 : + b += ((uint32_t)k8[6]) << 8; + case 6 : + b += ((uint32_t)k8[5]) << 16; + case 5 : + b += ((uint32_t)k8[4]) << 24; + case 4 : + a += k[0]; + break; + case 3 : + a += ((uint32_t)k8[2]) << 8; + case 2 : + a += ((uint32_t)k8[1]) << 16; + case 1 : + a += ((uint32_t)k8[0]) << 24; + break; + case 0 : + return c; + } + +#endif /* !VALGRIND */ + + } else { + /* need to read the key one byte at a time */ + const uint8_t *k = (const uint8_t *)key; + + while (length > 12) { + a += ((uint32_t)k[0]) << 24; + a += ((uint32_t)k[1]) << 16; + a += ((uint32_t)k[2]) << 8; + a += ((uint32_t)k[3]); + b += ((uint32_t)k[4]) << 24; + b += ((uint32_t)k[5]) << 16; + b += ((uint32_t)k[6]) << 8; + b += ((uint32_t)k[7]); + c += ((uint32_t)k[8]) << 24; + c += ((uint32_t)k[9]) << 16; + c += ((uint32_t)k[10]) << 8; + c += ((uint32_t)k[11]); + mix(a, b, c); + length -= 12; + k += 12; + } + + switch(length) { + case 12: + c += k[11]; + case 11: + c += ((uint32_t)k[10]) << 8; + case 10: + c += ((uint32_t)k[9]) << 16; + case 9 : + c += ((uint32_t)k[8]) << 24; + case 8 : + b += k[7]; + case 7 : + b += ((uint32_t)k[6]) << 8; + case 6 : + b += ((uint32_t)k[5]) << 16; + case 5 : + b += ((uint32_t)k[4]) << 24; + case 4 : + a += k[3]; + case 3 : + a += ((uint32_t)k[2]) << 8; + case 2 : + a += ((uint32_t)k[1]) << 16; + case 1 : + a += ((uint32_t)k[0]) << 24; + break; + case 0 : + return c; + } + } + + final(a, b, c); + return c; +} + +/** + * Hash a variable-length key into a 32-bit value + * @param key the key (the unaligned variable-length array of bytes) + * @param length the length of the key, counting by bytes + * @param initval can be any 4-byte value + * + * A small wrapper function that selects the proper hash function based on the + * native machine's byte-ordering. + * + */ +uint32_t jhash(const void *key, size_t length, uint32_t initval) +{ + if (length % sizeof(uint32_t) == 0) + return jhash_word(key, (length / sizeof(uint32_t)), initval); + else if (arch_def_native->endian == ARCH_ENDIAN_BIG) + return jhash_be(key, length, initval); + else + return jhash_le(key, length, initval); +}