]>
Commit | Line | Data |
---|---|---|
1 | ||
2 | /* | |
3 | ||
4 | * Original Author Unknow. | |
5 | ||
6 | * 8/10/88 - Ported from X10 to X11R3 by: | |
7 | ||
8 | Jonathan Greenblatt (jonnyg@rover.umd.edu) | |
9 | ||
10 | * Cleaned up by Dave Lemke (lemke@sun.com) | |
11 | ||
12 | * Ported to monocrome by Jonathan Greenblatt (jonnyg@rover.umd.edu) | |
13 | ||
14 | * 05/02/1996 Added TrueColor support by TJ Phan (phan@aur.alcatel.com) | |
15 | ||
16 | TODO: | |
17 | ||
18 | Parameter parsing needs to be redone. | |
19 | ||
20 | * Throughout 1991 improved for animation and color and multiple | |
21 | fish types. Broke monocrome in the process. | |
22 | Eric Bina (ebina@ncsa.uiuc.edu) | |
23 | ||
24 | * 1992 added extra color remapping control options, as well as ways | |
25 | to let the fish swim on the root window, or an image of the users | |
26 | choice. Eric Bina (ebina@ncsa.uiuc.edu) | |
27 | ||
28 | */ | |
29 | ||
30 | #include <sys/types.h> | |
31 | #ifndef hpux | |
32 | #include <sys/time.h> | |
33 | #else | |
34 | #include <time.h> | |
35 | #endif | |
36 | ||
37 | #include <stdio.h> | |
38 | #include <stdlib.h> | |
39 | #include <unistd.h> | |
40 | #include <string.h> | |
41 | #ifdef sgi | |
42 | #define _BSD_SIGNALS | |
43 | #endif | |
44 | #include <signal.h> | |
45 | #include <X11/Xlib.h> | |
46 | #include <X11/Xutil.h> | |
47 | ||
48 | #include "vroot.h" | |
49 | #include "xfishy.h" | |
50 | #include "bubbles.h" | |
51 | #include "medcut.h" | |
52 | ||
53 | /* constants are based on rand(3C) returning an integer between 0 and 32767 */ | |
54 | ||
55 | #if defined(ultrix) || defined(sun) || defined(linux) | |
56 | #define RAND_I_1_16 134217728 | |
57 | #define RAND_F_1_8 268435455.875 | |
58 | #define RAND_I_1_4 536870911 | |
59 | #define RAND_I_1_2 1073741823 | |
60 | #define RAND_I_3_4 1610612735 | |
61 | #define RAND_F_MAX 2147483647.0 | |
62 | #elif defined(__FreeBSD__) || defined(__OpenBSD__) | |
63 | #define RAND_I_1_16 (RAND_MAX>>4) | |
64 | #define RAND_F_1_8 ((float)(RAND_MAX>>3)) | |
65 | #define RAND_I_1_4 (RAND_MAX>>2) | |
66 | #define RAND_I_1_2 (RAND_MAX>>1) | |
67 | #define RAND_I_3_4 ((RAND_MAX>>2)*3) | |
68 | #define RAND_F_MAX ((float)RAND_MAX) | |
69 | #else | |
70 | #define RAND_I_1_16 2048 | |
71 | #define RAND_F_1_8 4096.0 | |
72 | #define RAND_I_1_4 8096 | |
73 | #define RAND_I_1_2 16384 | |
74 | #define RAND_I_3_4 24575 | |
75 | #define RAND_F_MAX 32767.0 | |
76 | #endif | |
77 | ||
78 | ||
79 | extern unsigned char *ReadBitmap(); | |
80 | ||
81 | ||
82 | /* externals for pixmap and bimaps from xfishy.h */ | |
83 | ||
84 | ||
85 | /* typedefs for bubble and fish structures, also caddr_t (not used in X.h) */ | |
86 | typedef struct { | |
87 | int x, y, s, erased, i; | |
88 | } bubble; | |
89 | typedef struct { | |
90 | int x, y, d, frame, type, i; | |
91 | } fish; | |
92 | typedef unsigned char *caddrt; | |
93 | ||
94 | ||
95 | /* bubble increment and yes check tables */ | |
96 | int binc[] = { 0, 64, 56, 48, 40, 32, 24, 16, 8 }; | |
97 | char *yess[] = { "yes", "Yes", "YES", "on", "On", "ON" }; | |
98 | ||
99 | ||
100 | char *pname, /* program name from argv[0] */ | |
101 | sname[64], /* host:display specification */ | |
102 | cname[64]; /* colorname specification */ | |
103 | char picname[256]; /* name of the background picture file */ | |
104 | int *Allocated; /* mark the used colors */ | |
105 | int AllocCnt; /* count number of colors used */ | |
106 | int mlimit = 0; /* num colors to median cut to. 0 = no limit */ | |
107 | int climit = 0; /* limit on color use. 0 = no limit */ | |
108 | int DoubleBuf = 0; /* Should we use double buffering */ | |
109 | int Overlap = 0; /* Should fish swim over each other */ | |
110 | int DoClipping = 0; /* Should clip masks be used. */ | |
111 | int blimit = 32, /* bubble limit */ | |
112 | flimit = 10, /* fish limit */ | |
113 | pmode = 1, /* pop mode, (1 for lower, 0 for raise) */ | |
114 | width, /* width of initial window in pixels */ | |
115 | height, /* height of initial window in pixels */ | |
116 | screen, /* Default screen of this display */ | |
117 | Init_B, *cmap; /* Initialize bubbles with random y value */ | |
118 | int Pwidth; /* width of background picture */ | |
119 | int Pheight; /* height of background picture */ | |
120 | int Pcnt; /* number of colors in background picture */ | |
121 | unsigned char *Pdata; /* data from background picture */ | |
122 | double rate = 0.2, /* update interval in seconds */ | |
123 | smooth = 0.2; /* smoothness increment multiplier */ | |
124 | bubble *binfo; /* bubble info structures, allocated | |
125 | * dynamically */ | |
126 | fish *finfo; /* fish info structures, allocated dynamically */ | |
127 | Display *Dpy; | |
128 | Window root_window; | |
129 | XImage *xfishA[NUM_FISH][3]; /* fish pixmaps (1 is left-fish, 2 is | |
130 | * right-fish) */ | |
131 | XImage *xfishB[NUM_FISH][3]; /* fish pixmaps (1 is left-fish, 2 is | |
132 | * right-fish) */ | |
133 | Pixmap pfishA[NUM_FISH][3]; | |
134 | Pixmap pfishB[NUM_FISH][3]; | |
135 | ||
136 | Pixmap mfishA[NUM_FISH][3]; /* masking pixmaps for fish to use as */ | |
137 | Pixmap mfishB[NUM_FISH][3]; /* clipmasks */ | |
138 | ||
139 | Pixmap PicMap; /* pixmap for background picture */ | |
140 | ||
141 | Pixmap PixBuf; /* Pixmap buffer for double buffering */ | |
142 | Pixmap ClipBuf; /* Clipmask buffer for double buffering */ | |
143 | ||
144 | Pixmap xbubbles[9]; /* bubbles bitmaps (1 to 8, by size in pixels) */ | |
145 | Window wid; /* aqaurium window */ | |
146 | unsigned long white, black, bcolor; | |
147 | Colormap colormap; | |
148 | GC c0gc, cpgc; /* GCs to operateon the Clipmask buffer */ | |
149 | GC pgc; | |
150 | GC gc, bgc; | |
151 | ||
152 | ||
153 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
154 | Output desired error message and exit. | |
155 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
156 | void | |
157 | msgdie(message) | |
158 | char *message; | |
159 | { | |
160 | fprintf(stderr, "%s: %s\n", pname, message); | |
161 | exit(1); | |
162 | } | |
163 | ||
164 | ||
165 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
166 | Set up program defaults, get X defaults, parse command line using getopts. | |
167 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
168 | void | |
169 | parse(argc, argv) | |
170 | int argc; | |
171 | char **argv; | |
172 | { | |
173 | int c, i; | |
174 | extern int optind; | |
175 | extern char *optarg; | |
176 | extern double atof(); | |
177 | ||
178 | pname = argv[0]; | |
179 | strncpy(sname, getenv("DISPLAY"), sizeof(sname) - 1); | |
180 | strcpy(cname, "MediumAquamarine"); | |
181 | ||
182 | while ((c = getopt(argc, argv, "dDob:C:c:p:m:f:i:r:s")) != EOF) { | |
183 | switch (c) { | |
184 | case 'd': | |
185 | DoClipping = 1; | |
186 | break; | |
187 | case 'D': | |
188 | DoubleBuf = 1; | |
189 | break; | |
190 | case 'o': | |
191 | Overlap = 1; | |
192 | break; | |
193 | case 'b': | |
194 | blimit = atoi(optarg); | |
195 | break; | |
196 | case 'C': | |
197 | climit = atoi(optarg); | |
198 | break; | |
199 | case 'm': | |
200 | mlimit = atoi(optarg); | |
201 | break; | |
202 | case 'c': | |
203 | strncpy(cname, optarg, sizeof(cname) - 1); | |
204 | break; | |
205 | case 'p': | |
206 | strncpy(picname, optarg, sizeof(picname) - 1); | |
207 | break; | |
208 | case 'f': | |
209 | flimit = atoi(optarg); | |
210 | break; | |
211 | case 'i': | |
212 | smooth = atof(optarg); | |
213 | break; | |
214 | case 'r': | |
215 | rate = atof(optarg); | |
216 | break; | |
217 | case 's': | |
218 | pmode = 0; | |
219 | break; | |
220 | case '?': | |
221 | fprintf(stderr, "usage: %s\n", pname); | |
222 | fprintf(stderr, "\t\t[-c color] background color\n"); | |
223 | fprintf(stderr, "\t\t[-b limit] number of bubbles (default 32)\n"); | |
224 | fprintf(stderr, "\t\t[-f limit] number of fish (default 10)\n"); | |
225 | fprintf(stderr, "\t\t[-i mult] move interval (default 0.2)\n"); | |
226 | fprintf(stderr, "\t\t[-r rate] move frequency (default 0.2)\n"); | |
227 | fprintf(stderr, "\t\t[-m num] median cut to this many colors\n"); | |
228 | fprintf(stderr, "\t\t[-C num] use only this many color cells\n"); | |
229 | fprintf(stderr, "\t\t[-d] clip fish, swim on root window\n"); | |
230 | fprintf(stderr, "\t\t[-p file] fish swim on picture in file\n"); | |
231 | fprintf(stderr, "\t\t[host:display]\n"); | |
232 | exit(1); | |
233 | } | |
234 | } | |
235 | ||
236 | if (optind < argc) { | |
237 | char *display; | |
238 | ||
239 | strncpy(sname, argv[optind], sizeof(sname) - 1); | |
240 | display = (char *) malloc(strlen(sname) + 9); | |
241 | snprintf(display, sizeof(display) - 1, "DISPLAY=%s", sname); | |
242 | putenv(display); | |
243 | } | |
244 | } | |
245 | ||
246 | ||
247 | void | |
248 | erasefish(f, x, y, d) | |
249 | fish *f; | |
250 | int x, y, d; | |
251 | { | |
252 | /* | |
253 | * for something as small as a bubble, it was never worth the | |
254 | * effort of using clipmasks to only turn of the bubble itself, so | |
255 | * we just clear the whole rectangle. | |
256 | */ | |
257 | XClearArea(Dpy, wid, x, y, rwidth[f->type], rheight[f->type], False); | |
258 | #if 0 | |
259 | XGCValues gcv; | |
260 | ||
261 | if (f->frame) { | |
262 | gcv.foreground = cmap[0]; | |
263 | gcv.fill_style = FillTiled; | |
264 | gcv.fill_style = FillSolid; | |
265 | gcv.tile = pfishB[f->type][d]; | |
266 | gcv.ts_x_origin = f->x; | |
267 | gcv.ts_y_origin = f->y; | |
268 | gcv.clip_mask = mfishB[f->type][d]; | |
269 | gcv.clip_x_origin = x; | |
270 | gcv.clip_y_origin = y; | |
271 | XChangeGC(Dpy, gc, GCForeground | GCClipMask | | |
272 | GCTile | GCTileStipXOrigin | GCTileStipYOrigin | | |
273 | GCFillStyle | GCClipXOrigin | GCClipYOrigin, &gcv); | |
274 | XCopyPlane(Dpy, mfishB[f->type][d], wid, gc, 0, 0, | |
275 | rwidth[f->type], rheight[f->type], x, y, (unsigned long) 1); | |
276 | } else { | |
277 | gcv.foreground = cmap[0]; | |
278 | gcv.fill_style = FillTiled; | |
279 | gcv.fill_style = FillSolid; | |
280 | gcv.tile = pfishA[f->type][d]; | |
281 | gcv.ts_x_origin = f->x; | |
282 | gcv.ts_y_origin = f->y; | |
283 | gcv.clip_mask = mfishA[f->type][d]; | |
284 | gcv.clip_x_origin = x; | |
285 | gcv.clip_y_origin = y; | |
286 | XChangeGC(Dpy, gc, GCForeground | GCClipMask | | |
287 | GCTile | GCTileStipXOrigin | GCTileStipYOrigin | | |
288 | GCFillStyle | GCClipXOrigin | GCClipYOrigin, &gcv); | |
289 | XCopyPlane(Dpy, mfishA[f->type][d], wid, gc, 0, 0, | |
290 | rwidth[f->type], rheight[f->type], x, y, (unsigned long) 1); | |
291 | } | |
292 | #endif | |
293 | } | |
294 | ||
295 | ||
296 | /* | |
297 | * Just places a fish. Normally this is all you need for animation, since | |
298 | * placeing the fish places an entire rectangle which erases most of the old | |
299 | * fish (the rest being cleaned up by the function that called putfish. | |
300 | * If DoClipping is set, this function is only called when placing a new | |
301 | * fish, otherwise newfish is called. | |
302 | */ | |
303 | void | |
304 | putfish(f) | |
305 | fish *f; | |
306 | { | |
307 | XGCValues gcv; | |
308 | ||
309 | if (f->frame) { | |
310 | /* | |
311 | * If we have a pixmap of the fish use it, otherwise use | |
312 | * the XImage of the fish. In reality we will never use | |
313 | * the XImage since X dies if the pixmap create failed | |
314 | */ | |
315 | if (pfishA[f->type][f->d]) { | |
316 | /* | |
317 | * Clipping overrides background picture because | |
318 | * the clipping prevents the drawing of any background | |
319 | * anyway. | |
320 | * DoClipping says just print a fish leaving the | |
321 | * background unchanged. | |
322 | * If there is a background picture, we use a buffer | |
323 | * to prevent flashing, we combine the background | |
324 | * picture and the fish, and then copy the | |
325 | * whole rectangle in. | |
326 | * Default is just copy in fish in with a background | |
327 | * color. | |
328 | */ | |
329 | if (DoClipping) { | |
330 | gcv.clip_mask = mfishA[f->type][f->d]; | |
331 | gcv.clip_x_origin = f->x; | |
332 | gcv.clip_y_origin = f->y; | |
333 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
334 | XCopyArea(Dpy, pfishA[f->type][f->d], wid, gc, | |
335 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
336 | } else if (picname[0] != '\0') { | |
337 | gcv.fill_style = FillTiled; | |
338 | gcv.tile = PicMap; | |
339 | gcv.ts_x_origin = -(f->x); | |
340 | gcv.ts_y_origin = -(f->y); | |
341 | gcv.clip_mask = None; | |
342 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
343 | GCTile | GCTileStipXOrigin | | |
344 | GCTileStipYOrigin | GCClipMask), &gcv); | |
345 | XFillRectangle(Dpy, PixBuf, pgc, 0, 0, rwidth[f->type], rheight[f->type]); | |
346 | ||
347 | gcv.clip_mask = mfishA[f->type][f->d]; | |
348 | gcv.clip_x_origin = 0; | |
349 | gcv.clip_y_origin = 0; | |
350 | XChangeGC(Dpy, pgc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
351 | XCopyArea(Dpy, pfishA[f->type][f->d], PixBuf, pgc, | |
352 | 0, 0, rwidth[f->type], rheight[f->type], 0, 0); | |
353 | ||
354 | XCopyArea(Dpy, PixBuf, wid, gc, | |
355 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
356 | } else { | |
357 | XCopyArea(Dpy, pfishA[f->type][f->d], wid, gc, | |
358 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
359 | } | |
360 | } else { | |
361 | XPutImage(Dpy, wid, gc, xfishA[f->type][f->d], 0, 0, | |
362 | f->x, f->y, rwidth[f->type], rheight[f->type]); | |
363 | } | |
364 | f->frame = 0; | |
365 | } else { | |
366 | /* | |
367 | * same as the above, only for the second frame of animation | |
368 | */ | |
369 | if (pfishB[f->type][f->d]) { | |
370 | if (DoClipping) { | |
371 | gcv.clip_mask = mfishB[f->type][f->d]; | |
372 | gcv.clip_x_origin = f->x; | |
373 | gcv.clip_y_origin = f->y; | |
374 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
375 | XCopyArea(Dpy, pfishB[f->type][f->d], wid, gc, | |
376 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
377 | } else if (picname[0] != '\0') { | |
378 | gcv.fill_style = FillTiled; | |
379 | gcv.tile = PicMap; | |
380 | gcv.ts_x_origin = -(f->x); | |
381 | gcv.ts_y_origin = -(f->y); | |
382 | gcv.clip_mask = None; | |
383 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
384 | GCTile | GCTileStipXOrigin | | |
385 | GCTileStipYOrigin | GCClipMask), &gcv); | |
386 | XFillRectangle(Dpy, PixBuf, pgc, 0, 0, rwidth[f->type], rheight[f->type]); | |
387 | ||
388 | gcv.clip_mask = mfishB[f->type][f->d]; | |
389 | gcv.clip_x_origin = 0; | |
390 | gcv.clip_y_origin = 0; | |
391 | XChangeGC(Dpy, pgc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
392 | XCopyArea(Dpy, pfishB[f->type][f->d], PixBuf, pgc, | |
393 | 0, 0, rwidth[f->type], rheight[f->type], 0, 0); | |
394 | ||
395 | XCopyArea(Dpy, PixBuf, wid, gc, | |
396 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
397 | } else { | |
398 | XCopyArea(Dpy, pfishB[f->type][f->d], wid, gc, | |
399 | 0, 0, rwidth[f->type], rheight[f->type], f->x, f->y); | |
400 | } | |
401 | } else { | |
402 | XPutImage(Dpy, wid, gc, xfishB[f->type][f->d], 0, 0, | |
403 | f->x, f->y, rwidth[f->type], rheight[f->type]); | |
404 | } | |
405 | f->frame = 1; | |
406 | } | |
407 | } | |
408 | ||
409 | ||
410 | /* | |
411 | * This function can only be called if DoClipping is True. It is used to | |
412 | * move a clipmasked fish. First the area under the fish is cleared, | |
413 | * and then the new fish is masked in. | |
414 | * The parameters x, y, amd d are from the old fish that is being | |
415 | * erased before the new fish is drawn. | |
416 | */ | |
417 | void | |
418 | movefish(f, x, y, d) | |
419 | fish *f; | |
420 | int x, y, d; | |
421 | { | |
422 | XGCValues gcv; | |
423 | int bx, by, bw, bh; | |
424 | ||
425 | /* | |
426 | * If we are going to double buffer, we need to find the bounding | |
427 | * rectangle of the overlap of the bounding rectangles of the old | |
428 | * and the new fish. | |
429 | */ | |
430 | if (DoubleBuf) { | |
431 | if (x < f->x) { | |
432 | bx = x; | |
433 | bw = f->x - x + rwidth[f->type]; | |
434 | } else { | |
435 | bx = f->x; | |
436 | bw = x - f->x + rwidth[f->type]; | |
437 | } | |
438 | if (y < f->y) { | |
439 | by = y; | |
440 | bh = f->y - y + rheight[f->type]; | |
441 | } else { | |
442 | by = f->y; | |
443 | bh = y - f->y + rheight[f->type]; | |
444 | } | |
445 | } | |
446 | ||
447 | if (f->frame) { | |
448 | /* | |
449 | * If there is a pixmap use it. | |
450 | * This branchis always taken since right now, if the pixmap | |
451 | * allocation failed, the program dies. | |
452 | */ | |
453 | if (pfishA[f->type][f->d]) { | |
454 | /* | |
455 | * A pointless if, you now only come here if | |
456 | * DoClipping is set, I've just been too lazy to | |
457 | * clean up my code. | |
458 | */ | |
459 | if (DoClipping) { | |
460 | /* | |
461 | * Set up the masked gc for when we eventually | |
462 | * draw the fish. Origin is different for | |
463 | * whether we are drawing into the buffer | |
464 | * or into the window | |
465 | */ | |
466 | gcv.clip_mask = mfishA[f->type][f->d]; | |
467 | if (DoubleBuf) { | |
468 | gcv.clip_x_origin = f->x - bx; | |
469 | gcv.clip_y_origin = f->y - by; | |
470 | } else { | |
471 | gcv.clip_x_origin = f->x; | |
472 | gcv.clip_y_origin = f->y; | |
473 | } | |
474 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
475 | ||
476 | /* | |
477 | * If we have a background picture we want to | |
478 | * clear to that background, otherwise we just | |
479 | * do an XCleararea, and let the root restore | |
480 | * the background. | |
481 | */ | |
482 | if (picname[0] != '\0') { | |
483 | gcv.fill_style = FillTiled; | |
484 | gcv.tile = PicMap; | |
485 | gcv.clip_mask = mfishB[f->type][d]; | |
486 | if (DoubleBuf) { | |
487 | gcv.ts_x_origin = 0 - bx; | |
488 | gcv.ts_y_origin = 0 - by; | |
489 | gcv.clip_x_origin = x - bx; | |
490 | gcv.clip_y_origin = y - by; | |
491 | } else { | |
492 | gcv.ts_x_origin = 0; | |
493 | gcv.ts_y_origin = 0; | |
494 | gcv.clip_x_origin = x; | |
495 | gcv.clip_y_origin = y; | |
496 | } | |
497 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
498 | GCTile | GCTileStipXOrigin | | |
499 | GCTileStipYOrigin | GCClipMask | | |
500 | GCClipXOrigin | GCClipYOrigin), &gcv); | |
501 | ||
502 | /* | |
503 | * if bouble buffering we clear the buffer | |
504 | * to the backgound picture, and then | |
505 | * shape the clip buffer to the shape of | |
506 | * the fish being erased. | |
507 | */ | |
508 | if (DoubleBuf) { | |
509 | XFillRectangle(Dpy, PixBuf, pgc, | |
510 | x - bx, y - by, rwidth[f->type], rheight[f->type]); | |
511 | XFillRectangle(Dpy, ClipBuf, c0gc, 0, 0, 500, 500); | |
512 | XCopyArea(Dpy, mfishB[f->type][d], | |
513 | ClipBuf, cpgc, 0, 0, | |
514 | rwidth[f->type], rheight[f->type], x - bx, y - by); | |
515 | } else { | |
516 | XFillRectangle(Dpy, wid, pgc, x, y, rwidth[f->type], rheight[f->type]); | |
517 | } | |
518 | } else { | |
519 | XClearArea(Dpy, wid, x, y, rwidth[f->type], rheight[f->type], 0); | |
520 | } | |
521 | } | |
522 | /* | |
523 | * Now we just copy in the new fish with a clipmasked gc. | |
524 | * But if we doublebuffered, we copy the new fish into | |
525 | * the buffer, combine the new fishes clipmask in, and | |
526 | * then mask the whole lot from the buffer to the window. | |
527 | */ | |
528 | if (DoubleBuf) { | |
529 | XCopyArea(Dpy, pfishA[f->type][f->d], PixBuf, gc, 0, 0, | |
530 | rwidth[f->type], rheight[f->type], f->x - bx, f->y - by); | |
531 | XCopyArea(Dpy, mfishA[f->type][f->d], ClipBuf, cpgc, | |
532 | 0, 0, rwidth[f->type], rheight[f->type], f->x - bx, f->y - by); | |
533 | gcv.clip_mask = ClipBuf; | |
534 | gcv.clip_x_origin = bx; | |
535 | gcv.clip_y_origin = by; | |
536 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
537 | XCopyArea(Dpy, PixBuf, wid, gc, 0, 0, bw, bh, bx, by); | |
538 | } else { | |
539 | XCopyArea(Dpy, pfishA[f->type][f->d], wid, gc, 0, 0, | |
540 | rwidth[f->type], rheight[f->type], f->x, f->y); | |
541 | } | |
542 | } else { | |
543 | if (DoClipping) { | |
544 | if (picname[0] != '\0') { | |
545 | gcv.fill_style = FillTiled; | |
546 | gcv.tile = PicMap; | |
547 | gcv.ts_x_origin = 0; | |
548 | gcv.ts_y_origin = 0; | |
549 | gcv.clip_mask = mfishB[f->type][d]; | |
550 | gcv.clip_x_origin = x; | |
551 | gcv.clip_y_origin = y; | |
552 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
553 | GCTile | GCTileStipXOrigin | | |
554 | GCTileStipYOrigin | GCClipMask | | |
555 | GCClipXOrigin | GCClipYOrigin), &gcv); | |
556 | XFillRectangle(Dpy, wid, pgc, x, y, rwidth[f->type], rheight[f->type]); | |
557 | } else { | |
558 | XClearArea(Dpy, wid, x, y, rwidth[f->type], rheight[f->type], 0); | |
559 | } | |
560 | } | |
561 | XPutImage(Dpy, wid, gc, xfishA[f->type][f->d], 0, 0, | |
562 | f->x, f->y, rwidth[f->type], rheight[f->type]); | |
563 | } | |
564 | f->frame = 0; | |
565 | } else { | |
566 | /* | |
567 | * Same as above, only for the second frame of animation. | |
568 | */ | |
569 | if (pfishB[f->type][f->d]) { | |
570 | if (DoClipping) { | |
571 | gcv.clip_mask = mfishB[f->type][f->d]; | |
572 | if (DoubleBuf) { | |
573 | gcv.clip_x_origin = f->x - bx; | |
574 | gcv.clip_y_origin = f->y - by; | |
575 | } else { | |
576 | gcv.clip_x_origin = f->x; | |
577 | gcv.clip_y_origin = f->y; | |
578 | } | |
579 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
580 | if (picname[0] != '\0') { | |
581 | gcv.fill_style = FillTiled; | |
582 | gcv.tile = PicMap; | |
583 | gcv.clip_mask = mfishA[f->type][d]; | |
584 | if (DoubleBuf) { | |
585 | gcv.ts_x_origin = 0 - bx; | |
586 | gcv.ts_y_origin = 0 - by; | |
587 | gcv.clip_x_origin = x - bx; | |
588 | gcv.clip_y_origin = y - by; | |
589 | } else { | |
590 | gcv.ts_x_origin = 0; | |
591 | gcv.ts_y_origin = 0; | |
592 | gcv.clip_x_origin = x; | |
593 | gcv.clip_y_origin = y; | |
594 | } | |
595 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
596 | GCTile | GCTileStipXOrigin | | |
597 | GCTileStipYOrigin | GCClipMask | | |
598 | GCClipXOrigin | GCClipYOrigin), &gcv); | |
599 | if (DoubleBuf) { | |
600 | XFillRectangle(Dpy, PixBuf, pgc, | |
601 | x - bx, y - by, rwidth[f->type], rheight[f->type]); | |
602 | XFillRectangle(Dpy, ClipBuf, c0gc, 0, 0, 500, 500); | |
603 | XCopyArea(Dpy, mfishA[f->type][d], | |
604 | ClipBuf, cpgc, 0, 0, | |
605 | rwidth[f->type], rheight[f->type], x - bx, y - by); | |
606 | } else { | |
607 | XFillRectangle(Dpy, wid, pgc, x, y, rwidth[f->type], rheight[f->type]); | |
608 | } | |
609 | } else { | |
610 | XClearArea(Dpy, wid, x, y, rwidth[f->type], rheight[f->type], 0); | |
611 | } | |
612 | } | |
613 | if (DoubleBuf) { | |
614 | XCopyArea(Dpy, pfishB[f->type][f->d], PixBuf, gc, 0, 0, | |
615 | rwidth[f->type], rheight[f->type], f->x - bx, f->y - by); | |
616 | XCopyArea(Dpy, mfishB[f->type][f->d], ClipBuf, cpgc, | |
617 | 0, 0, rwidth[f->type], rheight[f->type], f->x - bx, f->y - by); | |
618 | gcv.clip_mask = ClipBuf; | |
619 | gcv.clip_x_origin = bx; | |
620 | gcv.clip_y_origin = by; | |
621 | XChangeGC(Dpy, gc, GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
622 | XCopyArea(Dpy, PixBuf, wid, gc, 0, 0, bw, bh, bx, by); | |
623 | } else { | |
624 | XCopyArea(Dpy, pfishB[f->type][f->d], wid, gc, 0, 0, | |
625 | rwidth[f->type], rheight[f->type], f->x, f->y); | |
626 | } | |
627 | } else { | |
628 | if (DoClipping) { | |
629 | if (picname[0] != '\0') { | |
630 | gcv.fill_style = FillTiled; | |
631 | gcv.tile = PicMap; | |
632 | gcv.ts_x_origin = 0; | |
633 | gcv.ts_y_origin = 0; | |
634 | gcv.clip_mask = mfishA[f->type][d]; | |
635 | gcv.clip_x_origin = x; | |
636 | gcv.clip_y_origin = y; | |
637 | XChangeGC(Dpy, pgc, (GCFillStyle | | |
638 | GCTile | GCTileStipXOrigin | | |
639 | GCTileStipYOrigin | GCClipMask | | |
640 | GCClipXOrigin | GCClipYOrigin), &gcv); | |
641 | XFillRectangle(Dpy, wid, pgc, x, y, rwidth[f->type], rheight[f->type]); | |
642 | } else { | |
643 | XClearArea(Dpy, wid, x, y, rwidth[f->type], rheight[f->type], 0); | |
644 | } | |
645 | } | |
646 | XPutImage(Dpy, wid, gc, xfishB[f->type][f->d], 0, 0, | |
647 | f->x, f->y, rwidth[f->type], rheight[f->type]); | |
648 | } | |
649 | f->frame = 1; | |
650 | } | |
651 | } | |
652 | ||
653 | ||
654 | erasebubble(b, s) | |
655 | bubble *b; | |
656 | int s; | |
657 | { | |
658 | XClearArea(Dpy, wid, b->x, b->y, s, s, 0); | |
659 | } | |
660 | ||
661 | ||
662 | putbubble(b, s, c) | |
663 | bubble *b; | |
664 | int s; | |
665 | unsigned long c; | |
666 | { | |
667 | XGCValues gcv; | |
668 | ||
669 | gcv.foreground = c; | |
670 | gcv.clip_mask = xbubbles[s]; | |
671 | gcv.clip_x_origin = b->x; | |
672 | gcv.clip_y_origin = b->y; | |
673 | XChangeGC(Dpy, bgc, GCForeground | GCClipMask | GCClipXOrigin | GCClipYOrigin, &gcv); | |
674 | XFillRectangle(Dpy, wid, bgc, b->x, b->y, s, s); | |
675 | } | |
676 | ||
677 | ||
678 | /* | |
679 | * Find the closest color by allocating it, or picking an already allocated | |
680 | * color | |
681 | */ | |
682 | Visual(*visual_info) = NULL; | |
683 | int r_mask, g_mask, b_mask; | |
684 | int r_shift = 0, g_shift = 0, b_shift = 0; | |
685 | int r_bits = 0, g_bits = 0, b_bits = 0; | |
686 | void | |
687 | FindColor(Dpy, colormap, colr) | |
688 | Display *Dpy; | |
689 | Colormap colormap; | |
690 | XColor *colr; | |
691 | { | |
692 | int i, match; | |
693 | double rd, gd, bd, dist, mindist; | |
694 | int cindx; | |
695 | XColor def_colrs[256]; | |
696 | int NumCells; | |
697 | ||
698 | if (visual_info == NULL && DefaultDepth(Dpy, DefaultScreen(Dpy)) > 8) { | |
699 | visual_info = DefaultVisual(Dpy, DefaultScreen(Dpy)); | |
700 | r_mask = visual_info->red_mask; | |
701 | while (!(r_mask & 1)) { | |
702 | r_mask >>= 1; | |
703 | r_shift++; | |
704 | } | |
705 | while (r_mask & 1) { | |
706 | r_mask >>= 1; | |
707 | r_bits++; | |
708 | } | |
709 | ||
710 | g_mask = visual_info->green_mask; | |
711 | while (!(g_mask & 1)) { | |
712 | g_mask >>= 1; | |
713 | g_shift++; | |
714 | } | |
715 | while (g_mask & 1) { | |
716 | g_mask >>= 1; | |
717 | g_bits++; | |
718 | } | |
719 | ||
720 | b_mask = visual_info->blue_mask; | |
721 | while (!(b_mask & 1)) { | |
722 | b_mask >>= 1; | |
723 | b_shift++; | |
724 | } | |
725 | while (b_mask & 1) { | |
726 | b_mask >>= 1; | |
727 | b_bits++; | |
728 | } | |
729 | } | |
730 | ||
731 | if (DefaultDepth(Dpy, DefaultScreen(Dpy)) > 8) { | |
732 | colr->red >>= 16 - r_bits; | |
733 | colr->green >>= 16 - g_bits; | |
734 | colr->blue >>= 16 - b_bits; | |
735 | ||
736 | colr->pixel = ((colr->red << r_shift) & visual_info->red_mask) | | |
737 | ((colr->green << g_shift) & visual_info->green_mask) | | |
738 | ((colr->blue << b_shift) & visual_info->blue_mask); | |
739 | return; | |
740 | } | |
741 | ||
742 | if (AllocCnt < climit) { | |
743 | match = XAllocColor(Dpy, colormap, colr); | |
744 | } else { | |
745 | match = 0; | |
746 | } | |
747 | if (match == 0) { | |
748 | NumCells = DisplayCells(Dpy, DefaultScreen(Dpy)); | |
749 | for (i = 0; i < NumCells; i++) { | |
750 | def_colrs[i].pixel = i; | |
751 | } | |
752 | XQueryColors(Dpy, colormap, def_colrs, NumCells); | |
753 | mindist = 65536.0 * 65536.0; | |
754 | cindx = colr->pixel; | |
755 | for (i = 0; i < NumCells; i++) { | |
756 | rd = (def_colrs[i].red - colr->red) / 256.0; | |
757 | gd = (def_colrs[i].green - colr->green) / 256.0; | |
758 | bd = (def_colrs[i].blue - colr->blue) / 256.0; | |
759 | dist = (rd * rd * rd * rd) + (gd * gd * gd * gd) + (bd * bd * bd * bd); | |
760 | if (dist < mindist) { | |
761 | mindist = dist; | |
762 | cindx = def_colrs[i].pixel; | |
763 | } | |
764 | } | |
765 | colr->pixel = cindx; | |
766 | colr->red = def_colrs[cindx].red; | |
767 | colr->green = def_colrs[cindx].green; | |
768 | colr->blue = def_colrs[cindx].blue; | |
769 | } else { | |
770 | if (Allocated[colr->pixel] == 0) { | |
771 | Allocated[colr->pixel] = 1; | |
772 | AllocCnt++; | |
773 | } | |
774 | } | |
775 | } | |
776 | ||
777 | ||
778 | int | |
779 | ColorUsage(data, width, height, colrs) | |
780 | unsigned char *data; | |
781 | int width, height; | |
782 | struct colr_data *colrs; | |
783 | { | |
784 | int mapping[256]; | |
785 | int i, size; | |
786 | int cnt, indx; | |
787 | unsigned char *ptr; | |
788 | struct colr_data newcol[256]; | |
789 | ||
790 | for (i = 0; i < 256; i++) { | |
791 | mapping[i] = -1; | |
792 | } | |
793 | ||
794 | size = width * height; | |
795 | cnt = 0; | |
796 | ptr = data; | |
797 | for (i = 0; i < size; i++) { | |
798 | indx = (int) *ptr; | |
799 | if (mapping[indx] == -1) { | |
800 | mapping[indx] = cnt; | |
801 | newcol[cnt].red = colrs[indx].red; | |
802 | newcol[cnt].green = colrs[indx].green; | |
803 | newcol[cnt].blue = colrs[indx].blue; | |
804 | cnt++; | |
805 | } | |
806 | ptr++; | |
807 | } | |
808 | ||
809 | ptr = data; | |
810 | for (i = 0; i < size; i++) { | |
811 | indx = (int) *ptr; | |
812 | *ptr = (unsigned char) mapping[indx]; | |
813 | ptr++; | |
814 | } | |
815 | ||
816 | for (i = 0; i < cnt; i++) { | |
817 | colrs[i].red = newcol[i].red; | |
818 | colrs[i].green = newcol[i].green; | |
819 | colrs[i].blue = newcol[i].blue; | |
820 | } | |
821 | for (i = cnt; i < 256; i++) { | |
822 | colrs[i].red = 0; | |
823 | colrs[i].green = 0; | |
824 | colrs[i].blue = 0; | |
825 | } | |
826 | ||
827 | return (cnt); | |
828 | } | |
829 | ||
830 | ||
831 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
832 | Initialize colormap for background color and required fish colors. | |
833 | The fish colors are coded in xfishy.h as a trio of tables. | |
834 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
835 | void | |
836 | init_colormap() | |
837 | { | |
838 | FILE *fp; | |
839 | int i, j, cnt; | |
840 | int NumCells; | |
841 | XColor hdef, edef; | |
842 | struct colr_data *cdp; | |
843 | struct colr_data colrs[256]; | |
844 | ||
845 | colormap = XDefaultColormap(Dpy, screen); | |
846 | ||
847 | NumCells = DisplayCells(Dpy, DefaultScreen(Dpy)); | |
848 | Allocated = (int *) malloc(NumCells * sizeof(int)); | |
849 | for (i = 0; i < NumCells; i++) { | |
850 | Allocated[i] = 0; | |
851 | } | |
852 | AllocCnt = 0; | |
853 | if ((climit <= 0) || (climit > NumCells)) { | |
854 | climit = NumCells; | |
855 | } | |
856 | ||
857 | Pcnt = 0; | |
858 | if (picname[0] != '\0') { | |
859 | fp = fopen(picname, "r"); | |
860 | if (fp == NULL) { | |
861 | fprintf(stderr, "Cannot open picture %s for reading\n", picname); | |
862 | } else { | |
863 | Pdata = ReadBitmap(fp, &Pwidth, &Pheight, colrs); | |
864 | fclose(fp); | |
865 | Pcnt = ColorUsage(Pdata, Pwidth, Pheight, colrs); | |
866 | } | |
867 | } | |
868 | ||
869 | cnt = 0; | |
870 | cnt += Pcnt; | |
871 | for (i = 0; i < NUM_FISH; i++) { | |
872 | cnt += rcolors[i]; | |
873 | } | |
874 | cmap = (int *) malloc((cnt + 1) * sizeof(int)); | |
875 | ||
876 | XLookupColor(Dpy, colormap, cname, &hdef, &edef); | |
877 | hdef.flags = DoRed | DoGreen | DoBlue; | |
878 | FindColor(Dpy, colormap, &hdef); | |
879 | cmap[0] = hdef.pixel; | |
880 | ||
881 | if (mlimit > 0) { | |
882 | MedianInit(); | |
883 | } | |
884 | ||
885 | if (mlimit > 0) { | |
886 | if (picname[0] != '\0') { | |
887 | MedianCount(Pdata, Pwidth, Pheight, colrs); | |
888 | } | |
889 | for (j = 0; j < NUM_FISH; j++) { | |
890 | int *rp, *gp, *bp; | |
891 | ||
892 | cdp = (struct colr_data *) malloc(rcolors[j] * sizeof(struct colr_data)); | |
893 | rp = rreds[j]; | |
894 | gp = rgreens[j]; | |
895 | bp = rblues[j]; | |
896 | for (i = 0; i < rcolors[j]; i++) { | |
897 | cdp[i].red = *rp++; | |
898 | cdp[i].green = *gp++; | |
899 | cdp[i].blue = *bp++; | |
900 | } | |
901 | MedianCount((unsigned char *) xfishRasterA[j], | |
902 | (int) rwidth[j], (int) rheight[j], cdp); | |
903 | free((char *) cdp); | |
904 | } | |
905 | MedianSplit(mlimit); | |
906 | } | |
907 | ||
908 | cnt = 1; | |
909 | if (picname[0] != '\0') { | |
910 | for (i = 0; i < Pcnt; i++) { | |
911 | int rv, gv, bv; | |
912 | ||
913 | rv = colrs[i].red; | |
914 | gv = colrs[i].green; | |
915 | bv = colrs[i].blue; | |
916 | ||
917 | if (mlimit > 0) { | |
918 | ConvertColor(&rv, &gv, &bv); | |
919 | } | |
920 | ||
921 | hdef.red = rv; | |
922 | hdef.green = gv; | |
923 | hdef.blue = bv; | |
924 | hdef.flags = DoRed | DoGreen | DoBlue; | |
925 | FindColor(Dpy, colormap, &hdef); | |
926 | cmap[cnt] = hdef.pixel; | |
927 | cnt++; | |
928 | } | |
929 | } | |
930 | for (j = 0; j < NUM_FISH; j++) { | |
931 | int *rp, *gp, *bp; | |
932 | ||
933 | rp = rreds[j]; | |
934 | gp = rgreens[j]; | |
935 | bp = rblues[j]; | |
936 | for (i = 0; i < rcolors[j]; i++) { | |
937 | int rv, gv, bv; | |
938 | ||
939 | rv = *rp++; | |
940 | gv = *gp++; | |
941 | bv = *bp++; | |
942 | ||
943 | if (mlimit > 0) { | |
944 | ConvertColor(&rv, &gv, &bv); | |
945 | } | |
946 | ||
947 | hdef.red = rv; | |
948 | hdef.green = gv; | |
949 | hdef.blue = bv; | |
950 | hdef.flags = DoRed | DoGreen | DoBlue; | |
951 | FindColor(Dpy, colormap, &hdef); | |
952 | cmap[cnt] = hdef.pixel; | |
953 | if (i == rback[j]) { | |
954 | cmap[cnt] = cmap[0]; | |
955 | } | |
956 | cnt++; | |
957 | } | |
958 | } | |
959 | ||
960 | bcolor = white; | |
961 | } | |
962 | ||
963 | ||
964 | /* | |
965 | * Make am image of appropriate depth for display from image data. | |
966 | */ | |
967 | XImage * | |
968 | MakeImage(data, width, height) | |
969 | unsigned char *data; | |
970 | int width, height; | |
971 | { | |
972 | int linepad, shiftnum; | |
973 | int shiftstart, shiftstop, shiftinc; | |
974 | int bytesperline; | |
975 | int depth, temp; | |
976 | int w, h; | |
977 | XImage *newimage; | |
978 | unsigned char *bit_data, *bitp, *datap; | |
979 | ||
980 | depth = DefaultDepth(Dpy, DefaultScreen(Dpy)); | |
981 | if ((depth != 1) && (depth != 2) && (depth != 4) && (depth != 8)) { | |
982 | fprintf(stderr, "Don't know how to format image for display of depth %d\n", depth); | |
983 | exit(1); | |
984 | } | |
985 | ||
986 | if (BitmapBitOrder(Dpy) == LSBFirst) { | |
987 | shiftstart = 0; | |
988 | shiftstop = 8; | |
989 | shiftinc = depth; | |
990 | } else { | |
991 | shiftstart = 8 - depth; | |
992 | shiftstop = -depth; | |
993 | shiftinc = -depth; | |
994 | } | |
995 | linepad = 8 - (width % 8); | |
996 | bit_data = (unsigned char *) malloc(((width + linepad) * height) + 1); | |
997 | bitp = bit_data; | |
998 | datap = data; | |
999 | *bitp = 0; | |
1000 | shiftnum = shiftstart; | |
1001 | for (h = 0; h < height; h++) { | |
1002 | for (w = 0; w < width; w++) { | |
1003 | temp = *datap++ << shiftnum; | |
1004 | *bitp = *bitp | temp; | |
1005 | shiftnum = shiftnum + shiftinc; | |
1006 | if (shiftnum == shiftstop) { | |
1007 | shiftnum = shiftstart; | |
1008 | bitp++; | |
1009 | *bitp = 0; | |
1010 | } | |
1011 | } | |
1012 | for (w = 0; w < linepad; w++) { | |
1013 | shiftnum = shiftnum + shiftinc; | |
1014 | if (shiftnum == shiftstop) { | |
1015 | shiftnum = shiftstart; | |
1016 | bitp++; | |
1017 | *bitp = 0; | |
1018 | } | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | bytesperline = (width * depth / 8 + linepad); | |
1023 | newimage = XCreateImage(Dpy, DefaultVisual(Dpy, screen), depth, | |
1024 | ZPixmap, 0, (char *) bit_data, | |
1025 | (width + linepad), height, 8, bytesperline); | |
1026 | ||
1027 | return (newimage); | |
1028 | } | |
1029 | ||
1030 | ||
1031 | ||
1032 | static unsigned char bits[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; | |
1033 | ||
1034 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1035 | Calibrate the pixmaps and bimaps. The right-fish data is coded in xfishy.h, | |
1036 | this is transformed to create the left-fish. The eight bubbles are coded | |
1037 | in bubbles.h as a two dimensional array. | |
1038 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1039 | void | |
1040 | init_pixmap() | |
1041 | { | |
1042 | register caddrt p, q, x1A, x1B, x2A, x2B; | |
1043 | unsigned char *data; | |
1044 | register int i, j, k; | |
1045 | int cnt, wcnt; | |
1046 | ||
1047 | cnt = 1; | |
1048 | cnt += Pcnt; | |
1049 | for (k = 0; k < NUM_FISH; k++) { | |
1050 | ||
1051 | /* | |
1052 | * The clipmasks must be created before we remap colors. | |
1053 | * otherwise an opaque color might get remapped to a | |
1054 | * transparent color. | |
1055 | */ | |
1056 | if ((DoClipping) || (picname[0] != '\0')) { | |
1057 | data = (unsigned char *) malloc((rwidth[k] + 7) / 8 * rheight[k]); | |
1058 | ||
1059 | p = (caddrt) xfishRasterA[k]; | |
1060 | q = data; | |
1061 | wcnt = 0; | |
1062 | for (i = 0; i < ((rwidth[k] + 7) / 8 * rheight[k]); i++) { | |
1063 | unsigned char bt = 0x00; | |
1064 | for (j = 0; j < 8; j++) { | |
1065 | if (*p != rback[k]) { | |
1066 | bt = bt | bits[j]; | |
1067 | } | |
1068 | wcnt++; | |
1069 | p++; | |
1070 | if (wcnt == rwidth[k]) { | |
1071 | wcnt = 0; | |
1072 | break; | |
1073 | } | |
1074 | } | |
1075 | *q++ = bt; | |
1076 | } | |
1077 | mfishA[k][2] = XCreateBitmapFromData(Dpy, wid, | |
1078 | (char *) data, rwidth[k], rheight[k]); | |
1079 | ||
1080 | p = (caddrt) xfishRasterA[k]; | |
1081 | p = p + rwidth[k] - 1; | |
1082 | q = data; | |
1083 | wcnt = 0; | |
1084 | for (i = 0; i < ((rwidth[k] + 7) / 8 * rheight[k]); i++) { | |
1085 | unsigned char bt = 0x00; | |
1086 | for (j = 0; j < 8; j++) { | |
1087 | if (*p != rback[k]) { | |
1088 | bt = bt | bits[j]; | |
1089 | } | |
1090 | wcnt++; | |
1091 | p--; | |
1092 | if (wcnt == rwidth[k]) { | |
1093 | wcnt = 0; | |
1094 | p = p + (2 * rwidth[k]); | |
1095 | break; | |
1096 | } | |
1097 | } | |
1098 | *q++ = bt; | |
1099 | } | |
1100 | mfishA[k][1] = XCreateBitmapFromData(Dpy, wid, | |
1101 | (char *) data, rwidth[k], rheight[k]); | |
1102 | ||
1103 | p = (caddrt) xfishRasterB[k]; | |
1104 | q = data; | |
1105 | wcnt = 0; | |
1106 | for (i = 0; i < ((rwidth[k] + 7) / 8 * rheight[k]); i++) { | |
1107 | unsigned char bt = 0x00; | |
1108 | for (j = 0; j < 8; j++) { | |
1109 | if (*p != rback[k]) { | |
1110 | bt = bt | bits[j]; | |
1111 | } | |
1112 | wcnt++; | |
1113 | p++; | |
1114 | if (wcnt == rwidth[k]) { | |
1115 | wcnt = 0; | |
1116 | break; | |
1117 | } | |
1118 | } | |
1119 | *q++ = bt; | |
1120 | } | |
1121 | mfishB[k][2] = XCreateBitmapFromData(Dpy, wid, | |
1122 | (char *) data, rwidth[k], rheight[k]); | |
1123 | ||
1124 | p = (caddrt) xfishRasterB[k]; | |
1125 | p = p + rwidth[k] - 1; | |
1126 | q = data; | |
1127 | wcnt = 0; | |
1128 | for (i = 0; i < ((rwidth[k] + 7) / 8 * rheight[k]); i++) { | |
1129 | unsigned char bt = 0x00; | |
1130 | for (j = 0; j < 8; j++) { | |
1131 | if (*p != rback[k]) { | |
1132 | bt = bt | bits[j]; | |
1133 | } | |
1134 | wcnt++; | |
1135 | p--; | |
1136 | if (wcnt == rwidth[k]) { | |
1137 | wcnt = 0; | |
1138 | p = p + (2 * rwidth[k]); | |
1139 | break; | |
1140 | } | |
1141 | } | |
1142 | *q++ = bt; | |
1143 | } | |
1144 | mfishB[k][1] = XCreateBitmapFromData(Dpy, wid, | |
1145 | (char *) data, rwidth[k], rheight[k]); | |
1146 | ||
1147 | free((char *) data); | |
1148 | } | |
1149 | ||
1150 | if (DisplayPlanes(Dpy, screen) < 8) { | |
1151 | ||
1152 | j = rwidth[k] * rheight[k]; | |
1153 | x1A = (caddrt) malloc(rwidth[k] * rheight[k]); | |
1154 | p = (caddrt) xfishRasterA[k]; | |
1155 | ||
1156 | ||
1157 | q = x1A; | |
1158 | for (i = 0; i < j; i++) { | |
1159 | *q = cmap[cnt + (int) (*p)]; | |
1160 | p++; | |
1161 | q++; | |
1162 | } | |
1163 | ||
1164 | x1B = (caddrt) malloc(rwidth[k] * rheight[k]); | |
1165 | p = (caddrt) xfishRasterB[k]; | |
1166 | q = x1B; | |
1167 | for (i = 0; i < j; i++) { | |
1168 | *q = cmap[cnt + (int) (*p)]; | |
1169 | p++; | |
1170 | q++; | |
1171 | } | |
1172 | ||
1173 | x2A = (caddrt) malloc(rwidth[k] * rheight[k]); | |
1174 | for (i = 0; i < rheight[k]; i++) { | |
1175 | p = x1A + i * rwidth[k]; | |
1176 | q = x2A + (i + 1) * rwidth[k] - 1; | |
1177 | for (j = 0; j < rwidth[k]; j++) { | |
1178 | *q-- = *p++; | |
1179 | } | |
1180 | } | |
1181 | ||
1182 | x2B = (caddrt) malloc(rwidth[k] * rheight[k]); | |
1183 | for (i = 0; i < rheight[k]; i++) { | |
1184 | p = x1B + i * rwidth[k]; | |
1185 | q = x2B + (i + 1) * rwidth[k] - 1; | |
1186 | for (j = 0; j < rwidth[k]; j++) { | |
1187 | *q-- = *p++; | |
1188 | } | |
1189 | } | |
1190 | ||
1191 | xfishA[k][2] = MakeImage(x1A, rwidth[k], rheight[k]); | |
1192 | xfishA[k][1] = MakeImage(x2A, rwidth[k], rheight[k]); | |
1193 | xfishB[k][2] = MakeImage(x1B, rwidth[k], rheight[k]); | |
1194 | xfishB[k][1] = MakeImage(x2B, rwidth[k], rheight[k]); | |
1195 | ||
1196 | free((char *) x1A); | |
1197 | free((char *) x2A); | |
1198 | free((char *) x1B); | |
1199 | free((char *) x2B); | |
1200 | } else { | |
1201 | i = DisplayPlanes(Dpy, screen); | |
1202 | ||
1203 | xfishA[k][2] = | |
1204 | XGetImage(Dpy, root_window, 0, 0, rwidth[k], rheight[k], 0, ZPixmap); | |
1205 | ||
1206 | p = (caddrt) xfishRasterA[k]; | |
1207 | ||
1208 | for (j = 0; j < rheight[k]; j++) { | |
1209 | for (i = 0; i < rwidth[k]; i++) { | |
1210 | XPutPixel(xfishA[k][2], i, j, cmap[cnt + (int) (*p)]); | |
1211 | p++; | |
1212 | } | |
1213 | } | |
1214 | ||
1215 | xfishB[k][2] = | |
1216 | XGetImage(Dpy, root_window, 0, 0, rwidth[k], rheight[k], 0, ZPixmap); | |
1217 | ||
1218 | p = (caddrt) xfishRasterB[k]; | |
1219 | ||
1220 | for (j = 0; j < rheight[k]; j++) { | |
1221 | for (i = 0; i < rwidth[k]; i++) { | |
1222 | XPutPixel(xfishB[k][2], i, j, cmap[cnt + (int) (*p)]); | |
1223 | p++; | |
1224 | } | |
1225 | } | |
1226 | ||
1227 | xfishA[k][1] = | |
1228 | XGetImage(Dpy, root_window, 0, 0, rwidth[k], rheight[k], 0, ZPixmap); | |
1229 | ||
1230 | for (j = 0; j < rheight[k]; j++) { | |
1231 | for (i = 0; i < rwidth[k]; i++) { | |
1232 | XPutPixel(xfishA[k][1], i, j, | |
1233 | XGetPixel(xfishA[k][2], rwidth[k] - i - 1, j)); | |
1234 | } | |
1235 | } | |
1236 | ||
1237 | xfishB[k][1] = | |
1238 | XGetImage(Dpy, root_window, 0, 0, rwidth[k], rheight[k], 0, ZPixmap); | |
1239 | ||
1240 | for (j = 0; j < rheight[k]; j++) { | |
1241 | for (i = 0; i < rwidth[k]; i++) { | |
1242 | XPutPixel(xfishB[k][1], i, j, | |
1243 | XGetPixel(xfishB[k][2], rwidth[k] - i - 1, j)); | |
1244 | } | |
1245 | } | |
1246 | ||
1247 | } | |
1248 | ||
1249 | ||
1250 | i = DisplayPlanes(Dpy, screen); | |
1251 | ||
1252 | pfishA[k][1] = XCreatePixmap(Dpy, wid, rwidth[k], rheight[k], i); | |
1253 | pfishA[k][2] = XCreatePixmap(Dpy, wid, rwidth[k], rheight[k], i); | |
1254 | pfishB[k][1] = XCreatePixmap(Dpy, wid, rwidth[k], rheight[k], i); | |
1255 | pfishB[k][2] = XCreatePixmap(Dpy, wid, rwidth[k], rheight[k], i); | |
1256 | ||
1257 | if (pfishA[k][1]) { | |
1258 | XPutImage(Dpy, pfishA[k][1], gc, xfishA[k][1], 0, 0, 0, 0, rwidth[k], rheight[k]); | |
1259 | } | |
1260 | if (pfishA[k][2]) { | |
1261 | XPutImage(Dpy, pfishA[k][2], gc, xfishA[k][2], 0, 0, 0, 0, rwidth[k], rheight[k]); | |
1262 | } | |
1263 | if (pfishB[k][1]) { | |
1264 | XPutImage(Dpy, pfishB[k][1], gc, xfishB[k][1], 0, 0, 0, 0, rwidth[k], rheight[k]); | |
1265 | } | |
1266 | if (pfishB[k][2]) { | |
1267 | XPutImage(Dpy, pfishB[k][2], gc, xfishB[k][2], 0, 0, 0, 0, rwidth[k], rheight[k]); | |
1268 | } | |
1269 | ||
1270 | cnt += rcolors[k]; | |
1271 | } | |
1272 | ||
1273 | for (i = 1; i <= 8; i++) { | |
1274 | xbubbles[i] = XCreateBitmapFromData(Dpy, wid, (char *) xbBits[i], i, i); | |
1275 | } | |
1276 | } | |
1277 | ||
1278 | ||
1279 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1280 | Toggle secure mode on receipt of signal | |
1281 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1282 | #ifdef sgi | |
1283 | int | |
1284 | #else | |
1285 | void | |
1286 | #endif | |
1287 | toggle_secure() | |
1288 | { | |
1289 | pmode = !pmode; | |
1290 | if (pmode) | |
1291 | XLowerWindow(Dpy, wid); | |
1292 | else | |
1293 | XRaiseWindow(Dpy, wid); | |
1294 | XFlush(Dpy); | |
1295 | #ifdef sgi | |
1296 | return (1); | |
1297 | #endif | |
1298 | } | |
1299 | ||
1300 | ||
1301 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1302 | Initialize signal so that SIGUSR1 causes secure mode to toggle. | |
1303 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1304 | void | |
1305 | init_signals() | |
1306 | { | |
1307 | int ret; | |
1308 | #ifdef linux | |
1309 | signal(SIGUSR1, toggle_secure); | |
1310 | #else | |
1311 | #if defined(MOTOROLA) || defined(SCO) | |
1312 | sigset(SIGUSR1, toggle_secure); | |
1313 | #else | |
1314 | struct sigvec vec; | |
1315 | ||
1316 | vec.sv_handler = toggle_secure; | |
1317 | vec.sv_mask = 0; | |
1318 | vec.sv_onstack = 0; | |
1319 | ||
1320 | #ifndef hpux | |
1321 | ret = sigvec(SIGUSR1, &vec, &vec); | |
1322 | #if 0 | |
1323 | if (ret != 0) { | |
1324 | fprintf(stderr, "sigvec call failed\n"); | |
1325 | } else { | |
1326 | fprintf(stderr, "sigvec call OK\n"); | |
1327 | } | |
1328 | #endif | |
1329 | #else | |
1330 | sigvector(SIGUSR1, &vec, &vec); | |
1331 | #endif | |
1332 | #endif /* MOTOROLA */ | |
1333 | #endif /* LINUX */ | |
1334 | } | |
1335 | ||
1336 | ||
1337 | set_window_type_desktop(Display *dpy, Window wid) | |
1338 | { | |
1339 | Atom _NET_WM_WINDOW_TYPE, _NET_WM_WINDOW_TYPE_DESKTOP; | |
1340 | ||
1341 | _NET_WM_WINDOW_TYPE = XInternAtom(dpy, "_NET_WM_WINDOW_TYPE", False); | |
1342 | _NET_WM_WINDOW_TYPE_DESKTOP = XInternAtom(dpy, "_NET_WM_WINDOW_TYPE_DESKTOP", False); | |
1343 | ||
1344 | XChangeProperty(dpy, wid, _NET_WM_WINDOW_TYPE, XA_ATOM, 32, | |
1345 | PropModeReplace, (unsigned char *) &_NET_WM_WINDOW_TYPE_DESKTOP, 1); | |
1346 | } | |
1347 | ||
1348 | ||
1349 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1350 | Variety of initialization calls, including getting the window up and running. | |
1351 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1352 | void | |
1353 | initialize() | |
1354 | { | |
1355 | XWindowAttributes winfo; | |
1356 | XSetWindowAttributes attr; | |
1357 | XGCValues vals; | |
1358 | XSizeHints xsh; | |
1359 | XImage *pimage; | |
1360 | int i, size, cnt; | |
1361 | char *p; | |
1362 | unsigned char *ndata; | |
1363 | unsigned char *ptr1, *ptr2; | |
1364 | ||
1365 | root_window = VirtualRootWindowOfScreen(DefaultScreenOfDisplay(Dpy)); | |
1366 | ||
1367 | XGetWindowAttributes(Dpy, root_window, &winfo); | |
1368 | width = winfo.width; | |
1369 | height = winfo.height; | |
1370 | ||
1371 | picname[0] = '\0'; | |
1372 | if ((p = XGetDefault(Dpy, pname, "BubbleLimit")) != NULL) | |
1373 | blimit = atoi(p); | |
1374 | if ((p = XGetDefault(Dpy, pname, "ColorLimit")) != NULL) | |
1375 | climit = atoi(p); | |
1376 | if ((p = XGetDefault(Dpy, pname, "MedianCutLimit")) != NULL) | |
1377 | mlimit = atoi(p); | |
1378 | if ((p = XGetDefault(Dpy, pname, "DoClipping")) != NULL) | |
1379 | DoClipping = atoi(p); | |
1380 | if ((p = XGetDefault(Dpy, pname, "DoubleBuffer")) != NULL) | |
1381 | DoubleBuf = atoi(p); | |
1382 | if ((p = XGetDefault(Dpy, pname, "Overlap")) != NULL) | |
1383 | Overlap = atoi(p); | |
1384 | if ((p = XGetDefault(Dpy, pname, "Color")) != NULL) | |
1385 | strcpy(cname, p); | |
1386 | if ((p = XGetDefault(Dpy, pname, "Picture")) != NULL) | |
1387 | strcpy(picname, p); | |
1388 | if ((p = XGetDefault(Dpy, pname, "FishLimit")) != NULL) | |
1389 | flimit = atoi(p); | |
1390 | if ((p = XGetDefault(Dpy, pname, "IncMult")) != NULL) | |
1391 | smooth = atof(p); | |
1392 | if ((p = XGetDefault(Dpy, pname, "Rate")) != NULL) | |
1393 | rate = atof(p); | |
1394 | if ((p = XGetDefault(Dpy, pname, "Secure")) != NULL) | |
1395 | for (i = 0; i < 6; i++) | |
1396 | if (strcmp(p, yess[i]) == 0) | |
1397 | pmode = 0; | |
1398 | ||
1399 | /* | |
1400 | * DoubleBuf is only useful if we are doing clipping on our | |
1401 | * own background picture, otherwise turn it off. | |
1402 | */ | |
1403 | if ((DoubleBuf) && ((!DoClipping) || (picname[0] == '\0'))) { | |
1404 | DoubleBuf = 0; | |
1405 | } | |
1406 | ||
1407 | init_colormap(); | |
1408 | ||
1409 | if (picname[0] != '\0') { | |
1410 | size = Pwidth * Pheight; | |
1411 | ndata = (unsigned char *) malloc(size); | |
1412 | ptr1 = Pdata; | |
1413 | ptr2 = ndata; | |
1414 | cnt = 1; | |
1415 | for (i = 0; i < size; i++) { | |
1416 | *ptr2 = cmap[cnt + (int) (*ptr1)]; | |
1417 | ptr1++; | |
1418 | ptr2++; | |
1419 | } | |
1420 | pimage = MakeImage(ndata, Pwidth, Pheight); | |
1421 | free((char *) ndata); | |
1422 | i = DisplayPlanes(Dpy, screen); | |
1423 | PicMap = XCreatePixmap(Dpy, root_window, Pwidth, Pheight, i); | |
1424 | } | |
1425 | ||
1426 | if ((DoubleBuf) || (picname[0] != '\0')) { | |
1427 | i = DisplayPlanes(Dpy, screen); | |
1428 | PixBuf = XCreatePixmap(Dpy, root_window, 500, 500, i); | |
1429 | ClipBuf = XCreatePixmap(Dpy, root_window, 500, 500, 1); | |
1430 | c0gc = XCreateGC(Dpy, ClipBuf, 0, NULL); | |
1431 | XSetForeground(Dpy, c0gc, (unsigned long) 0); | |
1432 | XSetFunction(Dpy, c0gc, GXcopy); | |
1433 | cpgc = XCreateGC(Dpy, ClipBuf, 0, NULL); | |
1434 | XSetFunction(Dpy, cpgc, GXor); | |
1435 | } | |
1436 | ||
1437 | attr.override_redirect = True; | |
1438 | attr.background_pixel = cmap[0]; | |
1439 | ||
1440 | if (!DoClipping || picname[0] != '\0') { | |
1441 | wid = XCreateWindow(Dpy, root_window, | |
1442 | 1, 1, width - 2, height - 2, 0, | |
1443 | CopyFromParent, CopyFromParent, CopyFromParent, | |
1444 | CWBackPixel | CWOverrideRedirect, &attr); | |
1445 | ||
1446 | if (!wid) | |
1447 | msgdie("XCreateWindow failed"); | |
1448 | set_window_type_desktop(Dpy, wid); | |
1449 | } else { | |
1450 | wid = root_window; | |
1451 | XClearArea(Dpy, wid, 0, 0, 0, 0, False); | |
1452 | } | |
1453 | ||
1454 | vals.foreground = vals.background = cmap[0]; | |
1455 | vals.graphics_exposures = False; | |
1456 | gc = XCreateGC(Dpy, wid, GCForeground | GCBackground | GCGraphicsExposures, &vals); | |
1457 | pgc = XCreateGC(Dpy, wid, GCForeground | GCBackground | GCGraphicsExposures, &vals); | |
1458 | bgc = XCreateGC(Dpy, wid, GCForeground | GCBackground | GCGraphicsExposures, &vals); | |
1459 | ||
1460 | for (i = 0; i < NUM_FISH; i++) { | |
1461 | pfishA[i][0] = 0; | |
1462 | pfishA[i][1] = 0; | |
1463 | pfishA[i][2] = 0; | |
1464 | pfishB[i][0] = 0; | |
1465 | pfishB[i][1] = 0; | |
1466 | pfishB[i][2] = 0; | |
1467 | ||
1468 | mfishA[i][0] = 0; | |
1469 | mfishA[i][1] = 0; | |
1470 | mfishA[i][2] = 0; | |
1471 | mfishB[i][0] = 0; | |
1472 | mfishB[i][1] = 0; | |
1473 | mfishB[i][2] = 0; | |
1474 | } | |
1475 | ||
1476 | init_pixmap(); | |
1477 | init_signals(); | |
1478 | ||
1479 | if (!DoClipping || picname[0] != '\0') { | |
1480 | XStoreName(Dpy, wid, pname); | |
1481 | ||
1482 | xsh.flags = USSize | USPosition | PPosition | PSize; | |
1483 | xsh.x = xsh.y = 0; | |
1484 | xsh.width = width; | |
1485 | xsh.height = height; | |
1486 | XSetNormalHints(Dpy, wid, &xsh); | |
1487 | ||
1488 | if (picname[0] != '\0') { | |
1489 | XPutImage(Dpy, PicMap, gc, pimage, 0, 0, 0, 0, Pwidth, Pheight); | |
1490 | XSetWindowBackgroundPixmap(Dpy, wid, PicMap); | |
1491 | } | |
1492 | ||
1493 | XMapWindow(Dpy, wid); | |
1494 | } | |
1495 | ||
1496 | binfo = (bubble *) malloc(blimit * sizeof(bubble)); | |
1497 | finfo = (fish *) malloc(flimit * sizeof(fish)); | |
1498 | } | |
1499 | ||
1500 | ||
1501 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1502 | Create a new bubble. Placement along the x axis is random, as is the size of | |
1503 | the bubble. Increment value is determined by speed. | |
1504 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1505 | void | |
1506 | new_bubble(b0) | |
1507 | bubble *b0; | |
1508 | { | |
1509 | register int s; | |
1510 | register bubble *b = b0; | |
1511 | ||
1512 | b->x = width * (rand() / RAND_F_MAX); | |
1513 | if (Init_B) | |
1514 | b->y = (height / 16) * (rand() / RAND_I_1_16 + 1) - 1; | |
1515 | else | |
1516 | b->y = height - 1; | |
1517 | b->s = s = 1.0 + rand() / RAND_F_1_8; | |
1518 | if ((b->i = smooth * height / (float) binc[s]) == 0) | |
1519 | b->i = 1; | |
1520 | b->erased = 0; | |
1521 | putbubble(b, s, bcolor); | |
1522 | } | |
1523 | ||
1524 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1525 | Erase old bubbles, move and draw new bubbles. Random left-right factor | |
1526 | can move bubble one size-unit in either direction. | |
1527 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1528 | void | |
1529 | step_bubbles() | |
1530 | { | |
1531 | register int i, j, s; | |
1532 | register bubble *b; | |
1533 | ||
1534 | for (i = 0; i < blimit; i++) { | |
1535 | b = &binfo[i]; | |
1536 | s = b->s; | |
1537 | /* clear */ | |
1538 | if ((b->y > 0) && (b->erased == 0)) { | |
1539 | if ((DoClipping) || (picname[0] != '\0')) { | |
1540 | erasebubble(b, s); | |
1541 | } else { | |
1542 | putbubble(b, s, cmap[0]); | |
1543 | } | |
1544 | } | |
1545 | if ((b->y -= b->i) > 0) { | |
1546 | j = rand(); | |
1547 | if (j < RAND_I_1_4) { | |
1548 | b->x -= s; | |
1549 | } else if (j > RAND_I_3_4) { | |
1550 | b->x += s; | |
1551 | } | |
1552 | putbubble(b, s, bcolor); | |
1553 | } else { | |
1554 | if (rand() < RAND_I_1_4) { | |
1555 | new_bubble(b); | |
1556 | } | |
1557 | } | |
1558 | b->erased = 0; | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | ||
1563 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1564 | Fish over bubble collision detection. The specified fish is checked against | |
1565 | all bubbles for overlap. This way we don't try and erase bubbles that are | |
1566 | already gone. | |
1567 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1568 | void | |
1569 | collide_bubbles(f0, ofx, ofy) | |
1570 | fish *f0; | |
1571 | int ofx, ofy; | |
1572 | { | |
1573 | int i, delta; | |
1574 | register fish *f = f0; | |
1575 | register bubble *b; | |
1576 | ||
1577 | for (i = 0; i < blimit; i++) { | |
1578 | b = &binfo[i]; | |
1579 | delta = b->x - ofx; | |
1580 | if ((delta >= 0) && (delta <= (rwidth[f->type] - b->s))) { | |
1581 | delta = b->y - ofy; | |
1582 | if ((delta >= 0) && (delta <= (rheight[f->type] - b->s))) { | |
1583 | b->erased = 1; | |
1584 | continue; | |
1585 | } | |
1586 | } | |
1587 | delta = b->x - f->x; | |
1588 | if ((delta >= 0) && (delta <= (rwidth[f->type] - b->s))) { | |
1589 | delta = b->y - f->y; | |
1590 | if ((delta >= 0) && (delta <= (rheight[f->type] - b->s))) { | |
1591 | b->erased = 1; | |
1592 | continue; | |
1593 | } | |
1594 | } | |
1595 | } | |
1596 | } | |
1597 | ||
1598 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1599 | Fish collision detection. The specified fish is checked against all other | |
1600 | fish for overlap. The xt parameter specifies a x axis multiplier for overlap. | |
1601 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1602 | int | |
1603 | collide_fish(f0, xt) | |
1604 | fish *f0; | |
1605 | int xt; | |
1606 | { | |
1607 | int i, j; | |
1608 | register fish *f = f0; | |
1609 | ||
1610 | if (Overlap) { | |
1611 | return (0); | |
1612 | } | |
1613 | ||
1614 | for (i = 0; i < flimit; i++) { | |
1615 | if (&finfo[i] != f) { | |
1616 | j = finfo[i].y - f->y; | |
1617 | if ((j > -rheight[finfo[i].type]) && (j < rheight[f->type])) { | |
1618 | j = finfo[i].x - f->x; | |
1619 | if ((j > -xt * rwidth[finfo[i].type]) && (j < xt * rwidth[f->type])) { | |
1620 | return (1); | |
1621 | } | |
1622 | } | |
1623 | } | |
1624 | } | |
1625 | return (0); | |
1626 | } | |
1627 | ||
1628 | ||
1629 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1630 | Create a new fish. Placement along the y axis is random, as is the side | |
1631 | >from which the fish appears. Direction is determined from side. Increment | |
1632 | is also random. | |
1633 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1634 | void | |
1635 | new_fish(f0) | |
1636 | fish *f0; | |
1637 | { | |
1638 | int i, collide; | |
1639 | fish *f = f0; | |
1640 | ||
1641 | f->type = rand() % NUM_FISH; | |
1642 | for (i = 0, collide = 1; (i < 16) && (collide); i++) { | |
1643 | f->y = (height - rheight[f->type]) * (rand() / RAND_F_MAX); | |
1644 | if ((f->i = smooth * width / (8.0 * (1.0 + rand() / RAND_F_1_8))) == 0) { | |
1645 | f->i = 1; | |
1646 | } | |
1647 | if (rand() < RAND_I_1_2) { | |
1648 | f->d = 1; | |
1649 | f->x = width; | |
1650 | } else { | |
1651 | f->d = 2; | |
1652 | f->x = -rwidth[f->type]; | |
1653 | } | |
1654 | collide = collide_fish(f, 2); | |
1655 | } | |
1656 | ||
1657 | if (!collide) { | |
1658 | putfish(f); | |
1659 | } else { | |
1660 | f->d = 0; | |
1661 | } | |
1662 | ||
1663 | f->frame = 0; | |
1664 | } | |
1665 | ||
1666 | ||
1667 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1668 | Move all the fish. Clearing old fish is accomplished by masking only the | |
1669 | exposed areas of the old fish. Random up-down factor can move fish 1/4 a | |
1670 | fish height in either direction, if no collisions are caused. | |
1671 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1672 | void | |
1673 | move_fish() | |
1674 | { | |
1675 | register int i, j, x, y, ofx, ofy, ofd, done; | |
1676 | register fish *f; | |
1677 | ||
1678 | for (i = 0; i < flimit; i++) { | |
1679 | f = &finfo[i]; | |
1680 | if (f->d) { | |
1681 | ofx = f->x; | |
1682 | ofy = f->y; | |
1683 | ofd = f->d; | |
1684 | ||
1685 | if (f->d == 1) { | |
1686 | done = ((f->x -= f->i) < -rwidth[f->type]); | |
1687 | x = f->x + rwidth[f->type]; | |
1688 | } else if (f->d == 2) { | |
1689 | done = ((f->x += f->i) > width); | |
1690 | x = f->x - f->i; | |
1691 | } | |
1692 | ||
1693 | if (!collide_fish(f, 1)) { | |
1694 | if (!done) { | |
1695 | j = rand(); | |
1696 | if (j < RAND_I_1_4) { | |
1697 | y = f->i / 4; | |
1698 | } else if (j > RAND_I_3_4) { | |
1699 | y = f->i / -4; | |
1700 | } else { | |
1701 | y = 0; | |
1702 | } | |
1703 | ||
1704 | if (y) { | |
1705 | f->y += y; | |
1706 | if (collide_fish(f, 1)) { | |
1707 | f->y -= y; | |
1708 | y = 0; | |
1709 | } else { | |
1710 | if (y > 0) { | |
1711 | j = f->y - y; | |
1712 | } else { | |
1713 | j = f->y + rheight[f->type]; | |
1714 | y *= -1; | |
1715 | } | |
1716 | } | |
1717 | } | |
1718 | if (DoClipping) { | |
1719 | movefish(f, ofx, ofy, ofd); | |
1720 | } else { | |
1721 | putfish(f); | |
1722 | XClearArea(Dpy, wid, x, ofy, f->i, rheight[f->type], 0); | |
1723 | if (y) { | |
1724 | XClearArea(Dpy, wid, ofx, j, rwidth[f->type], y, 0); | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | } else { | |
1729 | XClearArea(Dpy, wid, x, f->y, f->i, rheight[f->type], 0); | |
1730 | new_fish(f); | |
1731 | } | |
1732 | } else { | |
1733 | if ((f->d = 3 - f->d) == 1) { | |
1734 | f->x = f->x - 2 * f->i; | |
1735 | x = f->x + rwidth[f->type]; | |
1736 | } else { | |
1737 | f->x = f->x + 2 * f->i; | |
1738 | x = f->x - f->i; | |
1739 | } | |
1740 | if (DoClipping) { | |
1741 | movefish(f, ofx, ofy, ofd); | |
1742 | } else { | |
1743 | putfish(f); | |
1744 | XClearArea(Dpy, wid, x, f->y, f->i, rheight[f->type], 0); | |
1745 | } | |
1746 | } | |
1747 | if ((!DoClipping) || (picname[0] == '\0')) { | |
1748 | collide_bubbles(f, ofx, ofy); | |
1749 | } | |
1750 | } else { | |
1751 | new_fish(f); | |
1752 | } | |
1753 | } | |
1754 | } | |
1755 | ||
1756 | ||
1757 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1758 | Higher-resolution sleep | |
1759 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1760 | void | |
1761 | high_res_sleep(seconds) | |
1762 | double seconds; | |
1763 | { | |
1764 | struct timeval timeout; | |
1765 | ||
1766 | timeout.tv_sec = seconds; | |
1767 | timeout.tv_usec = (seconds - timeout.tv_sec) * 1000000.0; | |
1768 | select(0, NULL, NULL, NULL, &timeout); | |
1769 | } | |
1770 | ||
1771 | ||
1772 | /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * | |
1773 | * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ | |
1774 | int | |
1775 | main(argc, argv) | |
1776 | int argc; | |
1777 | char **argv; | |
1778 | { | |
1779 | int i; | |
1780 | XEvent ev; | |
1781 | ||
1782 | parse(argc, argv); | |
1783 | if ((Dpy = XOpenDisplay(sname)) == 0) | |
1784 | msgdie("XOpenDisplay failed"); | |
1785 | screen = DefaultScreen(Dpy); | |
1786 | ||
1787 | white = WhitePixel(Dpy, screen); | |
1788 | black = BlackPixel(Dpy, screen); | |
1789 | initialize(); | |
1790 | ||
1791 | srand((unsigned) getpid()); | |
1792 | ||
1793 | Init_B = 1; | |
1794 | for (i = 0; i < blimit; i++) | |
1795 | new_bubble(&binfo[i]); | |
1796 | for (i = 0; i < flimit; i++) { | |
1797 | finfo[i].x = 0; | |
1798 | finfo[i].y = 0; | |
1799 | finfo[i].type = 0; | |
1800 | } | |
1801 | for (i = 0; i < flimit; i++) | |
1802 | new_fish(&finfo[i]); | |
1803 | if (pmode) | |
1804 | XLowerWindow(Dpy, wid); | |
1805 | else | |
1806 | XRaiseWindow(Dpy, wid); | |
1807 | XFlush(Dpy); | |
1808 | ||
1809 | Init_B = 0; | |
1810 | ||
1811 | for (;;) { | |
1812 | if (XPending(Dpy)) | |
1813 | XNextEvent(Dpy, &ev); | |
1814 | ||
1815 | high_res_sleep(rate); | |
1816 | ||
1817 | move_fish(); | |
1818 | ||
1819 | step_bubbles(); | |
1820 | ||
1821 | if (pmode) | |
1822 | XLowerWindow(Dpy, wid); | |
1823 | else | |
1824 | XRaiseWindow(Dpy, wid); | |
1825 | } | |
1826 | ||
1827 | return 0; | |
1828 | } |