`include "gcram.v"
-module GC (input clk, input clk_enable, input rst, input [15:0] Ein, output [15:0] Eout, input [3:0] gcop, output [5:0] ostate, output conn_et, output conn_ea, output step_eval, output ram_we, output [12:0] ram_addr, output [15:0] ram_di, input [15:0] ram_do, output [12:0] Pout);
+module GC (input clk, input clk_enable, input rst, input [15:0] Ein, output [15:0] Eout, input [3:0] gcop, output [5:0] ostate, output conn_et, output conn_ea, output step_eval, output ram_we, output [12:0] ram_addr, output [15:0] ram_di, input [15:0] ram_do, output [12:0] freeptr);
reg [15:0] rom_output;
reg [5:0] gostate;
reg [5:0] gnstate;
reg [12:0] A; // latched address
- assign Pout = P;
+ assign freeptr = P;
assign ram_addr = A;
assign ram_di = S;
`endif
module cpu (input clk, output [4:0] led, output uart_tx, input uart_rx);
- wire [12:0] P;
+ wire [12:0] freeptr;
wire [15:0] E1;
wire [15:0] E2;
wire [3:0] gcop;
GCRAM gcram (.clk(clk), .we(ram_we), .addr(ram_addr), .di(ram_di), .do(ram_do));
- GC gc (.clk(clk), .rst(reset), .clk_enable(gc_clock_enable), .Ein(E1), .Eout(E2), .gcop(gcop), .ostate(gostate), .step_eval(step_eval), .conn_ea(conn_ea), .conn_et(conn_et), .ram_we(gc_ram_we), .ram_addr(gc_ram_addr), .ram_di(gc_ram_di), .ram_do(ram_do), .Pout(P));
+ GC gc (.clk(clk), .rst(reset), .clk_enable(gc_clock_enable), .Ein(E1), .Eout(E2), .gcop(gcop), .ostate(gostate), .step_eval(step_eval), .conn_ea(conn_ea), .conn_et(conn_et), .ram_we(gc_ram_we), .ram_addr(gc_ram_addr), .ram_di(gc_ram_di), .ram_do(ram_do), .freeptr(freeptr));
EVAL eval (.clk(clk), .rst(reset), .clk_enable(eval_clock_enable), .Ein(E2), .Eout(E1), .gcop(gcop), .ostate(eostate), .conn_ea(conn_ea), .conn_et(conn_et), .eval_finished(eval_finished));
READER reader (.clk(clk), .clk_enable(reader_clock_enable), .rx_byte(uart_rx_byte), .rx_signal(uart_rx_signal), .finished(reader_finished), .ram_we(reader_ram_we), .ram_addr(reader_ram_addr), .ram_di(reader_ram_di));
- WRITER writer (.clk(clk), .clk_enable(writer_clock_enable), .tx_byte(uart_tx_byte), .tx_signal(uart_tx_signal), .tx_busy(uart_is_transmitting), .finished(writer_finished), .ram_addr(writer_ram_addr), .ram_do(ram_do), .P(P));
+ WRITER writer (.clk(clk), .clk_enable(writer_clock_enable), .tx_byte(uart_tx_byte), .tx_signal(uart_tx_signal), .tx_busy(uart_is_transmitting), .finished(writer_finished), .ram_addr(writer_ram_addr), .ram_do(ram_do), .freeptr(freeptr));
// UART outputs
wire uart_rx_signal;
`define STATE_WRITE2 2'b10
`define STATE_INCREMENT 2'b11
-module WRITER (input clk, input clk_enable, output reg [7:0] tx_byte, output reg tx_signal = 0, input tx_busy, output reg finished = 0, output [12:0] ram_addr, input [15:0] ram_do, input [12:0] P);
+module WRITER (input clk, input clk_enable, output reg [7:0] tx_byte, output reg tx_signal = 0, input tx_busy, output reg finished = 0, output [12:0] ram_addr, input [15:0] ram_do, input [12:0] freeptr);
reg [1:0] state = `STATE_START;
reg [12:0] current_index;
- reg [12:0] freeptr;
assign ram_addr = current_index;
case(state)
`STATE_START: begin
- finished <= 0;
current_index <= 4;
- freeptr <= P;
state <= `STATE_WRITE1;
end