Initial commit
[authen-passphrase-scrypt.git] / scrypt-1.2.1 / lib / crypto / crypto_scrypt-ref.c
1 /*-
2 * Copyright 2009 Colin Percival
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * This file was originally written by Colin Percival as part of the Tarsnap
27 * online backup system.
28 */
29 #include "scrypt_platform.h"
30
31 #include <errno.h>
32 #include <stdint.h>
33 #include <stdlib.h>
34 #include <string.h>
35
36 #include "sha256.h"
37 #include "sysendian.h"
38
39 #include "crypto_scrypt.h"
40
41 static void blkcpy(uint8_t *, uint8_t *, size_t);
42 static void blkxor(uint8_t *, uint8_t *, size_t);
43 static void salsa20_8(uint8_t[64]);
44 static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
45 static uint64_t integerify(uint8_t *, size_t);
46 static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);
47
48 static void
49 blkcpy(uint8_t * dest, uint8_t * src, size_t len)
50 {
51 size_t i;
52
53 for (i = 0; i < len; i++)
54 dest[i] = src[i];
55 }
56
57 static void
58 blkxor(uint8_t * dest, uint8_t * src, size_t len)
59 {
60 size_t i;
61
62 for (i = 0; i < len; i++)
63 dest[i] ^= src[i];
64 }
65
66 /**
67 * salsa20_8(B):
68 * Apply the salsa20/8 core to the provided block.
69 */
70 static void
71 salsa20_8(uint8_t B[64])
72 {
73 uint32_t B32[16];
74 uint32_t x[16];
75 size_t i;
76
77 /* Convert little-endian values in. */
78 for (i = 0; i < 16; i++)
79 B32[i] = le32dec(&B[i * 4]);
80
81 /* Compute x = doubleround^4(B32). */
82 for (i = 0; i < 16; i++)
83 x[i] = B32[i];
84 for (i = 0; i < 8; i += 2) {
85 #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
86 /* Operate on columns. */
87 x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
88 x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
89
90 x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
91 x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
92
93 x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
94 x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
95
96 x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
97 x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
98
99 /* Operate on rows. */
100 x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
101 x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
102
103 x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
104 x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
105
106 x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
107 x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
108
109 x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
110 x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
111 #undef R
112 }
113
114 /* Compute B32 = B32 + x. */
115 for (i = 0; i < 16; i++)
116 B32[i] += x[i];
117
118 /* Convert little-endian values out. */
119 for (i = 0; i < 16; i++)
120 le32enc(&B[4 * i], B32[i]);
121 }
122
123 /**
124 * blockmix_salsa8(B, Y, r):
125 * Compute B = BlockMix_{salsa20/8, r}(B). The input B must be 128r bytes in
126 * length; the temporary space Y must also be the same size.
127 */
128 static void
129 blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
130 {
131 uint8_t X[64];
132 size_t i;
133
134 /* 1: X <-- B_{2r - 1} */
135 blkcpy(X, &B[(2 * r - 1) * 64], 64);
136
137 /* 2: for i = 0 to 2r - 1 do */
138 for (i = 0; i < 2 * r; i++) {
139 /* 3: X <-- H(X \xor B_i) */
140 blkxor(X, &B[i * 64], 64);
141 salsa20_8(X);
142
143 /* 4: Y_i <-- X */
144 blkcpy(&Y[i * 64], X, 64);
145 }
146
147 /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
148 for (i = 0; i < r; i++)
149 blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
150 for (i = 0; i < r; i++)
151 blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
152 }
153
154 /**
155 * integerify(B, r):
156 * Return the result of parsing B_{2r-1} as a little-endian integer.
157 */
158 static uint64_t
159 integerify(uint8_t * B, size_t r)
160 {
161 uint8_t * X = &B[(2 * r - 1) * 64];
162
163 return (le64dec(X));
164 }
165
166 /**
167 * smix(B, r, N, V, XY):
168 * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; the
169 * temporary storage V must be 128rN bytes in length; the temporary storage
170 * XY must be 256r bytes in length. The value N must be a power of 2.
171 */
172 static void
173 smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
174 {
175 uint8_t * X = XY;
176 uint8_t * Y = &XY[128 * r];
177 uint64_t i;
178 uint64_t j;
179
180 /* 1: X <-- B */
181 blkcpy(X, B, 128 * r);
182
183 /* 2: for i = 0 to N - 1 do */
184 for (i = 0; i < N; i++) {
185 /* 3: V_i <-- X */
186 blkcpy(&V[i * (128 * r)], X, 128 * r);
187
188 /* 4: X <-- H(X) */
189 blockmix_salsa8(X, Y, r);
190 }
191
192 /* 6: for i = 0 to N - 1 do */
193 for (i = 0; i < N; i++) {
194 /* 7: j <-- Integerify(X) mod N */
195 j = integerify(X, r) & (N - 1);
196
197 /* 8: X <-- H(X \xor V_j) */
198 blkxor(X, &V[j * (128 * r)], 128 * r);
199 blockmix_salsa8(X, Y, r);
200 }
201
202 /* 10: B' <-- X */
203 blkcpy(B, X, 128 * r);
204 }
205
206 /**
207 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
208 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
209 * p, buflen) and write the result into buf. The parameters r, p, and buflen
210 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
211 * must be a power of 2.
212 *
213 * Return 0 on success; or -1 on error.
214 */
215 int
216 crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
217 const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p,
218 uint8_t * buf, size_t buflen)
219 {
220 uint8_t * B;
221 uint8_t * V;
222 uint8_t * XY;
223 size_t r = _r, p = _p;
224 uint32_t i;
225
226 /* Sanity-check parameters. */
227 #if SIZE_MAX > UINT32_MAX
228 if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
229 errno = EFBIG;
230 goto err0;
231 }
232 #endif
233 if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
234 errno = EFBIG;
235 goto err0;
236 }
237 if (((N & (N - 1)) != 0) || (N == 0)) {
238 errno = EINVAL;
239 goto err0;
240 }
241 if ((r > SIZE_MAX / 128 / p) ||
242 #if SIZE_MAX / 256 <= UINT32_MAX
243 (r > SIZE_MAX / 256) ||
244 #endif
245 (N > SIZE_MAX / 128 / r)) {
246 errno = ENOMEM;
247 goto err0;
248 }
249
250 /* Allocate memory. */
251 if ((B = malloc(128 * r * p)) == NULL)
252 goto err0;
253 if ((XY = malloc(256 * r)) == NULL)
254 goto err1;
255 if ((V = malloc(128 * r * N)) == NULL)
256 goto err2;
257
258 /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
259 PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
260
261 /* 2: for i = 0 to p - 1 do */
262 for (i = 0; i < p; i++) {
263 /* 3: B_i <-- MF(B_i, N) */
264 smix(&B[i * 128 * r], r, N, V, XY);
265 }
266
267 /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
268 PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
269
270 /* Free memory. */
271 free(V);
272 free(XY);
273 free(B);
274
275 /* Success! */
276 return (0);
277
278 err2:
279 free(XY);
280 err1:
281 free(B);
282 err0:
283 /* Failure! */
284 return (-1);
285 }
This page took 0.03147 seconds and 4 git commands to generate.