`include "gc.v" `include "eval.v" `include "reader.v" `include "uart.v" `include "writer.v" `define GCOP_NOP 4'd0 `define GCOP_CDR 4'd1 `define GCOP_CAR 4'd2 `define GCOP_CDRQ 4'd3 `define GCOP_CARQ 4'd4 `define GCOP_CARR 4'd5 `define GCOP_CDRRX 4'd6 `define GCOP_CARRX 4'd7 `define GCOP_CDRQX 4'd8 `define GCOP_CONS 4'd9 `define GCOP_XCONS 4'd10 `define GCOP_RPLACDR 4'd11 `define GCOP_LDQ 4'd12 `define GCOP_RDQ 4'd13 `define GCOP_RDQA 4'd14 `define GCOP_RDQCDRRX 4'd15 `define STATE_READ 3'b100 `define STATE_RUN 3'b010 `define STATE_WRITE 3'b001 `ifdef SIM `define START_STATE `STATE_RUN `else `define START_STATE `STATE_READ `endif `ifdef SIM `define UART_DIVIDE 1 `else `define UART_DIVIDE 625 `endif module cpu (input clk, output [4:0] led, output uart_tx, input uart_rx); reg [3:0] state = `START_STATE; wire is_reading = state == `STATE_READ; wire is_running = state == `STATE_RUN; wire is_writing = state == `STATE_WRITE; wire reset = !is_running; reg counter = 0; wire gc_clock_enable = is_running; wire eval_clock_enable = step_eval & is_running; wire reader_clock_enable = is_reading; wire writer_clock_enable = is_writing; always @ (posedge clk) counter <= counter + 1; wire [12:0] P; wire [15:0] E1; wire [15:0] E2; wire [3:0] gcop; wire [5:0] gostate; wire [5:0] eostate; wire conn_ea; wire conn_et; wire step_eval; wire gc_ram_we; wire [12:0] gc_ram_addr; wire [15:0] gc_ram_di; wire reader_ram_we; wire [12:0] reader_ram_addr; wire [15:0] reader_ram_di; wire [12:0] writer_ram_addr; wire ram_we = reader_clock_enable ? reader_ram_we : gc_ram_we; wire [12:0] ram_addr = reader_clock_enable ? reader_ram_addr : writer_clock_enable ? writer_ram_addr : gc_ram_addr; wire [15:0] ram_di = reader_clock_enable ? reader_ram_di : gc_ram_di; wire [15:0] ram_do; wire reader_finished; wire writer_finished; GCRAM gcram (.clk(clk), .we(ram_we), .addr(ram_addr), .di(ram_di), .do(ram_do)); GC gc (.clk(clk), .rst(reset), .clk_enable(gc_clock_enable), .Ein(E1), .Eout(E2), .gcop(gcop), .ostate(gostate), .step_eval(step_eval), .conn_ea(conn_ea), .conn_et(conn_et), .ram_we(gc_ram_we), .ram_addr(gc_ram_addr), .ram_di(gc_ram_di), .ram_do(ram_do), .Pout(P)); EVAL eval (.clk(clk), .rst(reset), .clk_enable(eval_clock_enable), .Ein(E2), .Eout(E1), .gcop(gcop), .ostate(eostate), .conn_ea(conn_ea), .conn_et(conn_et)); READER reader (.clk(clk), .clk_enable(reader_clock_enable), .rx_byte(uart_rx_byte), .rx_signal(uart_rx_signal), .finished(reader_finished), .ram_we(reader_ram_we), .ram_addr(reader_ram_addr), .ram_di(reader_ram_di)); WRITER writer (.clk(clk), .clk_enable(writer_clock_enable), .tx_byte(uart_tx_byte), .tx_signal(uart_tx_signal), .tx_busy(uart_is_transmitting), .finished(writer_finished), .ram_addr(writer_ram_addr), .ram_do(ram_do), .P(P)); // UART outputs wire uart_rx_signal; wire [7:0] uart_rx_byte; wire uart_is_receiving; wire uart_is_transmitting; wire uart_rx_error; // UART logic wire uart_tx_signal; wire [7:0] uart_tx_byte; always @ (posedge clk) begin if(is_writing & writer_finished) state <= `STATE_READ; if(is_reading & reader_finished) state <= `STATE_RUN; if(is_running & eostate == 5'd7) state <= `STATE_WRITE; end // 4800 baud uart uart #(.CLOCK_DIVIDE(`UART_DIVIDE)) uart (.clk(clk), .rx(uart_rx), .tx(uart_tx), .transmit(uart_tx_signal), .tx_byte(uart_tx_byte), .received(uart_rx_signal), .rx_byte(uart_rx_byte), .is_receiving(uart_is_receiving), .is_transmitting(uart_is_transmitting), .recv_error (uart_rx_error)); // Assign the outputs assign led[0] = is_reading; assign led[1] = uart_is_receiving; assign led[2] = is_writing; assign led[3] = uart_is_transmitting; assign led[4] = is_running; endmodule