Use all available memory for gcram
[yule.git] / lisp_processor.v
CommitLineData
2ed306f8
MG
1`include "asciihex.v"
2`include "generic_fifo_sc_a.v"
3`include "gc.v"
4`include "eval.v"
5`include "ram.v"
3f6eb730 6`include "reader.v"
2ed306f8
MG
7`include "rom.v"
8`include "prescaler.v"
9`include "single_trigger.v"
10`include "uart.v"
3f6eb730 11`include "writer.v"
2ed306f8
MG
12
13`define GCOP_NOP 4'd0
14`define GCOP_CDR 4'd1
15`define GCOP_CAR 4'd2
16`define GCOP_CDRQ 4'd3
17`define GCOP_CARQ 4'd4
18`define GCOP_CARR 4'd5
19`define GCOP_CDRRX 4'd6
20`define GCOP_CARRX 4'd7
21`define GCOP_CDRQX 4'd8
22`define GCOP_CONS 4'd9
23`define GCOP_XCONS 4'd10
24`define GCOP_RPLACDR 4'd11
25`define GCOP_LDQ 4'd12
26`define GCOP_RDQ 4'd13
27`define GCOP_RDQA 4'd14
28`define GCOP_RDQCDRRX 4'd15
29
3f6eb730
MG
30`ifdef SIM
31 `define UART_DIVIDE 1
32`else
eb54e6d0 33 `define UART_DIVIDE 625
3f6eb730
MG
34`endif
35
2ed306f8 36module PROCESSOR (input clk, output [4:0] led, output uart_tx, input uart_rx);
b5efed3a
MG
37 wire [15:0] result;
38
39 reg [5:0] initial_reset = 30;
40 always @ (posedge clk)
41 if (initial_reset) initial_reset <= initial_reset - 1;
2ed306f8 42
3f6eb730 43 wire reset = |initial_reset || reader_active || writer_clock_enable;
2ed306f8
MG
44 reg [1:0] counter = 0;
45
3f6eb730
MG
46 wire gc_clock_enable = counter[0] & counter[1] & !reset;
47 wire eval_clock_enable = counter[0] & !counter[1] & step_eval & !reset;
eb54e6d0 48 wire writer_clock_enable = counter[0] & counter[1] & writer_active;
2ed306f8
MG
49
50 always @ (posedge clk)
51 counter <= counter + 1;
52
eb54e6d0 53 wire [12:0] P;
b5efed3a
MG
54 wire [15:0] E1;
55 wire [15:0] E2;
2ed306f8
MG
56 wire [3:0] gcop;
57 wire [5:0] gostate;
58 wire [5:0] eostate;
59 wire conn_ea;
60 wire conn_et;
61
62 wire step_eval;
63
3f6eb730
MG
64 wire gc_ram_we;
65 wire [12:0] gc_ram_addr;
66 wire [15:0] gc_ram_di;
67
68 wire reader_ram_we;
69 wire [12:0] reader_ram_addr;
70 wire [15:0] reader_ram_di;
71
72 wire [12:0] writer_ram_addr;
73
74 wire reader_active;
75
76 wire ram_we = reader_active ? reader_ram_we : gc_ram_we;
eb54e6d0 77 wire [12:0] ram_addr = reader_active ? reader_ram_addr : writer_active ? writer_ram_addr : gc_ram_addr;
3f6eb730 78 wire [15:0] ram_di = reader_active ? reader_ram_di : gc_ram_di;
44b73af5
MG
79 wire [15:0] ram_do;
80
3f6eb730 81 wire writer_finished;
3f6eb730 82 reg writer_started = 0;
eb54e6d0 83 reg writer_active = 0;
3f6eb730 84
eb54e6d0 85 GCRAM gcram (.clk(clk), .we(ram_we), .addr(ram_addr), .di(ram_di), .do(ram_do));
44b73af5 86
eb54e6d0 87 GC gc (.clk(clk), .rst(reset), .clk_enable(gc_clock_enable), .Ein(E1), .Eout(E2), .gcop(gcop), .ostate(gostate), .step_eval(step_eval), .conn_ea(conn_ea), .conn_et(conn_et), .ram_we(gc_ram_we), .ram_addr(gc_ram_addr), .ram_di(gc_ram_di), .ram_do(ram_do), .Pout(P));
3f6eb730
MG
88
89 EVAL eval (.clk(clk), .rst(reset), .clk_enable(eval_clock_enable), .Ein(E2), .Eout(E1), .gcop(gcop), .ostate(eostate), .conn_ea(conn_ea), .conn_et(conn_et));
2ed306f8 90
3f6eb730
MG
91 READER reader (.clk(clk), .clk_enable(!initial_reset), .uart_rx_byte(uart_rx_byte), .uart_rx_signal(uart_rx_signal), .uart_is_receiving(uart_is_receiving), .active(reader_active), .ram_we(reader_ram_we), .ram_addr(reader_ram_addr), .ram_di(reader_ram_di));
92
eb54e6d0 93 WRITER writer (.clk(clk), .clk_enable(writer_clock_enable), .uart_tx_byte(uart_tx_byte), .uart_tx_signal(uart_tx_signal), .uart_is_transmitting(uart_is_transmitting), .finished(writer_finished), .ram_addr(writer_ram_addr), .ram_do(ram_do), .P(P));
2ed306f8
MG
94
95 // UART outputs
96 wire uart_rx_signal;
97 wire [7:0] uart_rx_byte;
98 wire uart_is_receiving;
99 wire uart_is_transmitting;
100 wire uart_rx_error;
101
2ed306f8 102 // UART logic
3f6eb730
MG
103 wire uart_tx_signal;
104 wire [7:0] uart_tx_byte;
105
106 always @ (posedge clk) begin
107 if(writer_finished)
eb54e6d0 108 writer_active <= 0;
3f6eb730
MG
109
110 if(reader_active) begin
111 writer_started <= 0;
3f6eb730
MG
112 end else if(eostate == 5'd7 && !writer_started) begin
113 writer_started <= 1;
eb54e6d0 114 writer_active <= 1;
3f6eb730
MG
115 end
116 end
2ed306f8 117
eb54e6d0 118 // 4800 baud uart
3f6eb730 119 uart #(.CLOCK_DIVIDE(`UART_DIVIDE)) uart (.clk(clk), .rx(uart_rx), .tx(uart_tx), .transmit(uart_tx_signal), .tx_byte(uart_tx_byte), .received(uart_rx_signal), .rx_byte(uart_rx_byte), .is_receiving(uart_is_receiving), .is_transmitting(uart_is_transmitting), .recv_error (uart_rx_error));
2ed306f8
MG
120
121 // Assign the outputs
3f6eb730 122 assign led[0] = eval_clock_enable;
2ed306f8
MG
123 assign led[1] = uart_is_transmitting;
124 assign led[2] = uart_is_receiving;
2155cfe3 125 assign led[3] = writer_finished;
eb54e6d0 126 assign led[4] = !reset;
2ed306f8 127endmodule
This page took 0.017056 seconds and 4 git commands to generate.