Complete test coverage of assembler
[app-scheme79asm.git] / lib / App / Scheme79asm.pm
1 package App::Scheme79asm;
2
3 use 5.014000;
4 use strict;
5 use warnings;
6
7 use Data::Dumper qw/Dumper/;
8 use Data::SExpression qw/consp scalarp/;
9 use Scalar::Util qw/looks_like_number/;
10
11 our $VERSION = '0.004';
12
13 our %TYPES = (
14 LIST => 0,
15 SYMBOL => 1,
16 NUMBER => 1,
17 VAR => 2,
18 VARIABLE => 2,
19 CLOSURE => 3,
20 PROC => 4,
21 PROCEDURE => 4,
22 IF => 5,
23 COND => 5,
24 CONDITIONAL => 5,
25 CALL => 6,
26 QUOTE => 7,
27 QUOTED => 7,
28
29 MORE => 0,
30 CAR => 1,
31 CDR => 2,
32 CONS => 3,
33 ATOM => 4,
34 PROGN => 5,
35 'REVERSE-LIST' => 6,
36 FUNCALL => 7,
37 );
38
39 *consp = *Data::SExpression::consp;
40 *scalarp = *Data::SExpression::scalarp;
41
42 sub process {
43 my ($self, $sexp, $location) = @_;
44 die 'Toplevel is not a list: ', Dumper($sexp), "\n" unless ref $sexp eq 'ARRAY';
45 my ($type, @addrs) = @$sexp;
46 my $addr;
47
48 die 'Type of toplevel is not atom: '. Dumper($type), "\n" unless scalarp($type);
49
50 if (@addrs > 1) {
51 $addr = $self->{freeptr} + 1;
52 $self->{freeptr} += @addrs;
53 $self->process($addrs[$_], $addr + $_) for 0 .. $#addrs;
54 } else {
55 $addr = $addrs[0];
56 }
57
58 $addr = $self->process($addr) if ref $addr eq 'ARRAY';
59 die 'Addr of toplevel is not atom: ', Dumper($addr), "\n" unless scalarp($addr);
60 my ($comment_type, $comment_addr) = ($type, $addr);
61 die 'Computed addr is not a number: ', Dumper($addr), "\n" unless looks_like_number $addr;
62
63 if (!looks_like_number $type) {
64 die "No such type: $type\n" unless exists $TYPES{$type};
65 $type = $TYPES{$type};
66 }
67
68 $addr += (1 << $self->{addr_bits}) if $addr < 0;
69 die "Type too large: $type\n" unless $type < (1 << $self->{type_bits});
70 die "Addr too large: $addr\n" unless $addr < (1 << $self->{addr_bits});
71 my $result = ($type << $self->{addr_bits}) + $addr;
72 unless ($location) {
73 $self->{freeptr}++;
74 $location = $self->{freeptr}
75 }
76 $self->{memory}[$location] = $result;
77 $self->{comment}[$location] = "$comment_type $comment_addr";
78 $location
79 }
80
81 sub parse {
82 my ($self, $string) = @_;
83 my $ds = Data::SExpression->new({symbol_case => 'up', use_symbol_class => 1, fold_lists => 1});
84
85 my $sexp;
86 while () {
87 last if $string =~ /^\s*$/;
88 ($sexp, $string) = $ds->read($string);
89 $self->process($sexp)
90 }
91 }
92
93 sub finish {
94 my ($self) = @_;
95 $self->{memory}[5] = $self->{memory}[$self->{freeptr}];
96 $self->{comment}[5] = $self->{comment}[$self->{freeptr}];
97 $self->{memory}[4] = $self->{freeptr};
98 delete $self->{memory}[$self->{freeptr}]
99 }
100
101 sub new {
102 my ($class, %args) = @_;
103 $args{type_bits} //= 3;
104 $args{addr_bits} //= 8;
105 $args{freeptr} //= 6;
106 $args{memory} //= [0, 0, (1<<$args{addr_bits}), (1<<$args{addr_bits}), 0, 0, 0];
107 $args{comment} = ['(cdr part of NIL)', '(car part of NIL)', '(cdr part of T)', '(car part of T)', '(free storage pointer)', '', '(result of computation)'];
108 bless \%args, $class
109 }
110
111 sub print_binary16 {
112 my ($self, $fh) = @_;
113 $fh //= \*STDOUT; # uncoverable condition right
114
115 die "addr_bits + type_bits >= 16\n"if $self->{addr_bits} + $self->{type_bits} > 16;
116
117 my $length = @{$self->{memory}};
118 print $fh pack('n', $length);
119 for (@{$self->{memory}}) {
120 print $fh pack('n', $_)
121 }
122 }
123
124 sub print_verilog {
125 my ($self, $fh) = @_;
126 $fh //= \*STDOUT; # uncoverable condition right
127
128 my $bits = $self->{type_bits} + $self->{addr_bits};
129 my $index_length = length $#{$self->{memory}};
130 my $index_format = '%' . $index_length . 'd';
131 for my $index (0 .. $#{$self->{memory}}) {
132 my $val = $self->{memory}[$index];
133 my $comment = $self->{comment}[$index];
134 if ($index == 4) {
135 $val = "${bits}'d$val"
136 } else {
137 $val = $val ? sprintf "%d'b%0${bits}b", $bits, $val : '0';
138 }
139 my $spaces = ' ' x ($bits + 5 - (length $val));
140 $index = sprintf $index_format, $index;
141
142 print $fh "mem[$index] <= $val;";
143 print $fh "$spaces // $comment" if defined $comment;
144 print $fh "\n";
145 }
146
147 }
148 sub parse_and_print_binary16 {
149 my ($self, $string, $fh) = @_;
150 $self->parse($string);
151 $self->finish;
152 $self->print_binary16($fh);
153 }
154
155 sub parse_and_print_verilog {
156 my ($self, $string, $fh) = @_;
157 $self->parse($string);
158 $self->finish;
159 $self->print_verilog($fh);
160 }
161
162 1;
163 __END__
164
165 =encoding utf-8
166
167 =head1 NAME
168
169 App::Scheme79asm - assemble sexp to Verilog ROM for SIMPLE processor
170
171 =head1 SYNOPSIS
172
173 use App::Scheme79asm;
174 my $asm = App::Scheme79asm->new(type_bits => 3, addr_bits => 5);
175 $asm->parse_and_print_verilog('(number 70)');
176
177 =head1 DESCRIPTION
178
179 SIMPLE is a LISP processor defined in the 1979
180 B<Design of LISP-Based Processors> paper by Steele and Sussman.
181
182 The SIMPLE processor expects input in a particular tagged-pointer
183 format. This module takes a string containing a sequence of
184 S-expressions. Each S-expression is a list of one of three types:
185
186 C<(tag value)>, for example C<(symbol 2)>, represents a value to be
187 put in memory (for example a number, or a symbol, or a variable
188 reference).
189
190 C<(tag list)>, where C<list> is of one of these three types,
191 represents a tagged pointer. In this case, C<list> is (recursively)
192 laid out in memory as per these rules, and a pointer to that location
193 (and tagged C<tag>) is put somewhere in memory.
194
195 C<(tag list1 list2)>, where C<list1> and C<list2> are of one of these
196 three types (not necessarily the same type). In this case, C<list1>
197 and C<list2> are (recursively) laid out in memory such that C<list1>
198 is at position X and C<list2> is at position X+1, and a pointer of
199 type tag and value X is put somewhere in memory.
200
201 After this process the very last pointer placed in memory is moved to
202 the special location 5 (which is where SIMPLE expects to find the
203 expression to be evaluated).
204
205 In normal use a single S-expression will be supplied, representing an
206 entire program.
207
208 The C<tag> is either a number, a type, or a primitive.
209 The available types are:
210
211 =over
212
213 =item LIST
214
215 =item SYMBOL (syn. NUMBER)
216
217 =item VAR (syn. VARIABLE)
218
219 =item CLOSURE
220
221 =item PROC (syn. PROCEDURE)
222
223 =item IF (syn. COND, CONDITIONAL)
224
225 =item CALL
226
227 =item QUOTE (syn. QUOTED)
228
229 =back
230
231 The available primitives are:
232
233 =over
234
235 =item MORE
236
237 =item CAR
238
239 =item CDR
240
241 =item CONS
242
243 =item ATOM
244
245 =item PROGN
246
247 =item REVERSE-LIST
248
249 =item FUNCALL
250
251 =back
252
253 The following methods are available:
254
255 =over
256
257 =item App::Scheme79asm->B<new>([key => value, key => value, ...])
258
259 Create a new assembler object. Takes a list of keys and values, here
260 are the possible keys:
261
262 =over
263
264 =item type_bits
265
266 =item address_bits
267
268 A word is made of a type and an address, with the type occupying the
269 most significant C<type_bits> (default 3) bits, and the address
270 occupying the least significant C<address_bits> (default 8) bits.
271 Therefore the word size is C<type_bits + address_bits> (default 13).
272
273 =item freeptr
274
275 A pointer to the last used byte in memory (default 6). The program
276 will be laid out starting with location C<freeptr + 1>.
277
278 =item memory
279
280 The initial contents of the memory. Note that locations 4, 5, 6 will
281 be overwritten, as will every location larger than the value of
282 C<freeptr>.
283
284 =item comment
285
286 The initial comments for memory entries. C<< $comment->[$i] >> is the
287 comment for C<< $memory->[$i] >>.
288
289 =back
290
291 =item $asm->B<parse>(I<$string>)
292
293 Parse a sequence of S-expressions and lay it out in memory.
294 Can be called multiple times to lay out multiple sequences of
295 S-expressions one after another.
296
297 =item $asm->B<process>(I<$sexp>)
298
299 Given an already-parsed sexp (meaning a
300 L<Data::SExpression> object), lay it out in memory.
301 Can be called multiple times to lay out multiple sequences of
302 S-expressions one after another.
303
304 =item $asm->B<finish>
305
306 Move the last pointer to position 5, and put the free pointer at
307 position 4. After all sequences of S-expressions have been given to
308 B<parse>, this method should be called.
309
310 =item $asm->B<print_binary16>([I<$fh>])
311
312 Print the length of the memory (as a big-endian 16-bit value),
313 followed by the memory contents as a sequence of big-endian 16-bit
314 values to the given filehandle (default STDOUT). Dies if
315 C<addr_bits + type_bits> is more than 16.
316
317 Big-endian 16-bit values can be decoded with C<unpack 'n', $value>.
318
319 =item $asm->B<print_verilog>([I<$fh>])
320
321 Print a block of Verilog code assigning the memory contents to an
322 array named C<mem> to the given filehandle (default STDOUT).
323
324 =item $asm->B<parse_and_print_binary16>(I<$string>[, I<$fh>])
325
326 Convenience method that calls B<parse>($string), B<finish>, and then
327 B<print_binary16>($fh).
328
329 =item $asm->B<parse_and_print_verilog>(I<$string>[, I<$fh>])
330
331 Convenience method that calls B<parse>($string), B<finish>, and then
332 B<print_verilog>($fh).
333
334 =back
335
336 =head1 SEE ALSO
337
338 L<http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-514.pdf>
339
340 =head1 AUTHOR
341
342 Marius Gavrilescu, E<lt>marius@ieval.roE<gt>
343
344 =head1 COPYRIGHT AND LICENSE
345
346 Copyright (C) 2018 by Marius Gavrilescu
347
348 This library is free software; you can redistribute it and/or modify
349 it under the same terms as Perl itself, either Perl version 5.24.3 or,
350 at your option, any later version of Perl 5 you may have available.
351
352
353 =cut
This page took 0.041282 seconds and 4 git commands to generate.