Fix T, negative addrs, and add binary print
[app-scheme79asm.git] / lib / App / Scheme79asm.pm
1 package App::Scheme79asm;
2
3 use 5.014000;
4 use strict;
5 use warnings;
6
7 use Data::Dumper qw/Dumper/;
8 use Data::SExpression qw/consp scalarp/;
9 use Scalar::Util qw/looks_like_number/;
10
11 our $VERSION = '0.002';
12
13 our %TYPES = (
14 LIST => 0,
15 SYMBOL => 1,
16 NUMBER => 1,
17 VAR => 2,
18 VARIABLE => 2,
19 CLOSURE => 3,
20 PROC => 4,
21 PROCEDURE => 4,
22 IF => 5,
23 COND => 5,
24 CONDITIONAL => 5,
25 CALL => 6,
26 QUOTE => 7,
27 QUOTED => 7,
28
29 MORE => 0,
30 CAR => 1,
31 CDR => 2,
32 CONS => 3,
33 ATOM => 4,
34 PROGN => 5,
35 'REVERSE-LIST' => 6,
36 FUNCALL => 7,
37 );
38
39 *consp = *Data::SExpression::consp;
40 *scalarp = *Data::SExpression::scalarp;
41
42 sub process {
43 my ($self, $sexp, $location) = @_;
44 die 'Toplevel is not a list: ', Dumper($sexp), "\n" unless ref $sexp eq 'ARRAY';
45 my ($type, @addrs) = @$sexp;
46 my $addr;
47
48 die 'Type of toplevel is not atom: '. Dumper($type), "\n" unless scalarp($type);
49
50 if (@addrs > 1) {
51 $addr = $self->{freeptr} + 1;
52 $self->{freeptr} += @addrs;
53 $self->process($addrs[$_], $addr + $_) for 0 .. $#addrs;
54 } else {
55 $addr = $addrs[0];
56 }
57
58 $addr = $self->process($addr) if ref $addr eq 'ARRAY';
59 die 'Addr of toplevel is not atom: ', Dumper($addr), "\n" unless scalarp($addr);
60
61 my ($comment_type, $comment_addr) = ($type, $addr);
62
63 unless (looks_like_number $addr) { # is symbol
64 unless (exists $self->{symbols}{$addr}) {
65 $self->{symbols}{$addr} = $self->{nsymbols};
66 $self->{nsymbols}++;
67 }
68 $addr = $self->{symbols}{$addr}
69 }
70
71 die 'Computed addr is not a number: ', Dumper($addr), "\n" unless looks_like_number $addr;
72
73 if (ref $type eq 'Data::SExpression::Symbol') {
74 die "No such type: $type\n" unless exists $TYPES{$type};
75 $type = $TYPES{$type};
76 } elsif (!looks_like_number $type) {
77 die "Type is not a number or symbol: $type\n"
78 }
79
80 $addr += (1 << $self->{addr_bits}) if $addr < 0;
81 die "Type too large: $type\n" unless $type < (1 << $self->{type_bits});
82 die "Addr too large: $addr\n" unless $addr < (1 << $self->{addr_bits});
83 my $result = ($type << $self->{addr_bits}) + $addr;
84 unless ($location) {
85 $self->{freeptr}++;
86 $location = $self->{freeptr}
87 }
88 $self->{memory}[$location] = $result;
89 $self->{comment}[$location] = "$comment_type $comment_addr";
90 $location
91 }
92
93 sub parse {
94 my ($self, $string) = @_;
95 my $ds = Data::SExpression->new({symbol_case => 'up', use_symbol_class => 1, fold_lists => 1});
96
97 my $sexp;
98 while () {
99 last if $string =~ /^\s*$/;
100 ($sexp, $string) = $ds->read($string);
101 $self->process($sexp)
102 }
103 }
104
105 sub finish {
106 my ($self) = @_;
107 $self->{memory}[5] = $self->{memory}[$self->{freeptr}];
108 $self->{comment}[5] = $self->{comment}[$self->{freeptr}];
109 $self->{memory}[4] = $self->{freeptr};
110 delete $self->{memory}[$self->{freeptr}]
111 }
112
113 sub new {
114 my ($class, %args) = @_;
115 $args{type_bits} //= 3;
116 $args{addr_bits} //= 8;
117 $args{freeptr} //= 6;
118 $args{memory} //= [0, 0, (1<<$args{addr_bits}), (1<<$args{addr_bits}), 0, 0, 0];
119 $args{symbols}{T} = 2;
120 $args{nsymbols} = 3;
121 $args{comment} = ['(cdr part of NIL)', '(car part of NIL)', '(cdr part of T)', '(car part of T)', '(free storage pointer)', '', '(result of computation)'];
122 bless \%args, $class
123 }
124
125 sub print_binary16 {
126 my ($self, $fh) = @_;
127 $fh //= \*STDOUT;
128
129 my $length = @{$self->{memory}};
130 print $fh pack('n', $length);
131 for (@{$self->{memory}}) {
132 print $fh pack('n', $_)
133 }
134 }
135
136 sub print_verilog {
137 my ($self, $fh) = @_;
138 $fh //= \*STDOUT;
139
140 my $bits = $self->{type_bits} + $self->{addr_bits};
141 my $index_length = length $#{$self->{memory}};
142 my $index_format = '%' . $index_length . 'd';
143 for my $index (0 .. $#{$self->{memory}}) {
144 my $val = $self->{memory}[$index];
145 my $comment = $self->{comment}[$index];
146 if ($index == 4) {
147 $val = "${bits}'d$val"
148 } else {
149 $val = $val ? sprintf "%d'b%0${bits}b", $bits, $val : '0';
150 }
151 my $spaces = ' ' x ($bits + 5 - (length $val));
152 $index = sprintf $index_format, $index;
153 say $fh "mem[$index] <= $val;$spaces // $comment"
154 }
155
156 }
157 sub parse_and_print_binary16 {
158 my ($self, $string, $fh) = @_;
159 $self->parse($string);
160 $self->finish;
161 $self->print_binary16($fh);
162 }
163
164 sub parse_and_print_verilog {
165 my ($self, $string, $fh) = @_;
166 $self->parse($string);
167 $self->finish;
168 $self->print_verilog($fh);
169 }
170
171 1;
172 __END__
173
174 =encoding utf-8
175
176 =head1 NAME
177
178 App::Scheme79asm - assemble sexp to Verilog ROM for SIMPLE processor
179
180 =head1 SYNOPSIS
181
182 use App::Scheme79asm;
183 my $asm = App::Scheme79asm->new(type_bits => 3, addr_bits => 5);
184 $asm->parse_and_print_verilog('(number 70)');
185
186 =head1 DESCRIPTION
187
188 SIMPLE is a LISP processor defined in the 1979
189 B<Design of LISP-Based Processors> paper by Steele and Sussman.
190
191 The SIMPLE processor expects input in a particular tagged-pointer
192 format. This module takes a string containing a sequence of
193 S-expressions. Each S-expression is a list of one of three types:
194
195 C<(tag value)>, for example C<(symbol nil)>, represents a value to be
196 put in memory (for example a number, or a symbol, or a variable
197 reference).
198
199 C<(tag list)>, where C<list> is of one of these three types,
200 represents a tagged pointer. In this case, C<list> is (recursively)
201 laid out in memory as per these rules, and a pointer to that location
202 (and tagged C<tag>) is put somewhere in memory.
203
204 C<(tag list1 list2)>, where C<list1> and C<list2> are of one of these
205 three types (not necessarily the same type). In this case, C<list1>
206 and C<list2> are (recursively) laid out in memory such that C<list1>
207 is at position X and C<list2> is at position X+1, and a pointer of
208 type tag and value X is put somewhere in memory.
209
210 After this process the very last pointer placed in memory is moved to
211 the special location 5 (which is where SIMPLE expects to find the
212 expression to be evaluated).
213
214 In normal use a single S-expression will be supplied, representing an
215 entire program.
216
217 The C<tag> is either a number, a type, or a primitive.
218 The available types are:
219
220 =over
221
222 =item LIST
223
224 =item SYMBOL (syn. NUMBER)
225
226 =item VAR (syn. VARIABLE)
227
228 =item CLOSURE
229
230 =item PROC (syn. PROCEDURE)
231
232 =item IF (syn. COND, CONDITIONAL)
233
234 =item CALL
235
236 =item QUOTE (syn. QUOTED)
237
238 =back
239
240 The available primitives are:
241
242 =over
243
244 =item MORE
245
246 =item CAR
247
248 =item CDR
249
250 =item CONS
251
252 =item ATOM
253
254 =item PROGN
255
256 =item REVERSE-LIST
257
258 =item FUNCALL
259
260 =back
261
262 The following methods are available:
263
264 =over
265
266 =item App::Scheme79asm->B<new>([key => value, key => value, ...])
267
268 Create a new assembler object. Takes a list of keys and values, here
269 are the possible keys:
270
271 =over
272
273 =item type_bits
274
275 =item address_bits
276
277 A word is made of a type and an address, with the type occupying the
278 most significant C<type_bits> (default 3) bits, and the address
279 occupying the least significant C<address_bits> (default 8) bits.
280 Therefore the word size is C<type_bits + address_bits> (default 13).
281
282 =item freeptr
283
284 A pointer to the last used byte in memory (default 6). The program
285 will be laid out starting with location C<freeptr + 1>.
286
287 =item memory
288
289 The initial contents of the memory. Note that locations 4, 5, 6 will
290 be overwritten, as will every location larger than the value of
291 C<freeptr>.
292
293 =item comment
294
295 The initial comments for memory entries. C<< $comment->[$i] >> is the
296 comment for C<< $memory->[$i] >>.
297
298 =item symbols
299
300 The initial symbol map, as a hashref from symbol name to the index of
301 that symbol. Defaults to C<< {T => 2} >>.
302
303 =item nsymbols
304
305 The number to give to the "next" symbol (default 3, because T is
306 defined to be 2).
307
308 =back
309
310 =item $asm->B<parse>(I<$string>)
311
312 Parse a sequence of S-expressions and lay it out in memory.
313 Can be called multiple times to lay out multiple sequences of
314 S-expressions one after another.
315
316 =item $asm->B<finish>
317
318 Move the last pointer to position 5, and put the free pointer at
319 position 4. After all sequences of S-expressions have been given to
320 B<parse>, this method should be called.
321
322 =item $asm->B<print_binary16>([I<$fh>])
323
324 Print the length of the memory (as a big-endian 16-bit value),
325 followed by the memory contents as a sequence of big-endian 16-bit
326 values to the given filehandle (default STDOUT). Dies if
327 C<addr_bits + type_bits> is more than 16.
328
329 Big-endian 16-bit values can be decoded with C<unpack 'n', $value>.
330
331 =item $asm->B<print_verilog>([I<$fh>])
332
333 Print a block of Verilog code assigning the memory contents to an
334 array named C<mem> to the given filehandle (default STDOUT).
335
336 =item $asm->B<parse_and_print_binary16>(I<$string>[, I<$fh>])
337
338 Convenience method that calls B<parse>($string), B<finish>, and then
339 B<print_binary16>($fh).
340
341 =item $asm->B<parse_and_print_verilog>(I<$string>[, I<$fh>])
342
343 Convenience method that calls B<parse>($string), B<finish>, and then
344 B<print_verilog>($fh).
345
346 =back
347
348 =head1 SEE ALSO
349
350 L<http://repository.readscheme.org/ftp/papers/ai-lab-pubs/AIM-514.pdf>
351
352 =head1 AUTHOR
353
354 Marius Gavrilescu, E<lt>marius@ieval.roE<gt>
355
356 =head1 COPYRIGHT AND LICENSE
357
358 Copyright (C) 2018 by Marius Gavrilescu
359
360 This library is free software; you can redistribute it and/or modify
361 it under the same terms as Perl itself, either Perl version 5.24.3 or,
362 at your option, any later version of Perl 5 you may have available.
363
364
365 =cut
This page took 0.041142 seconds and 5 git commands to generate.